1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#![cfg_attr(all(feature = "nightly", test), feature(test))]

extern crate ndarray;
extern crate rand;
extern crate num_traits;
#[macro_use] extern crate log;

#[cfg(all(feature = "nightly", test))]
extern crate test;

use num_traits::Float;

use std::ops;
use std::fmt;

pub type Matrix<T> = ndarray::Array2<T>;

pub trait LapJVCost: Float + ops::AddAssign + ops::SubAssign + std::fmt::Debug {}
impl <T>LapJVCost for T where T: Float + ops::AddAssign + ops::SubAssign + std::fmt::Debug {}

#[derive(Debug)]
pub struct LapJVError(&'static str);

impl std::fmt::Display for LapJVError {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(f, "{}", self.0)
    }
}

impl std::error::Error for LapJVError {
    fn description(&self) -> &str {
        self.0
    }
}

pub struct LapJV<'a, T: 'a> {
    costs: &'a Matrix<T>,
    dim: usize,
    free_rows: Vec<usize>,
    v: Vec<T>,
    in_col: Vec<usize>,
    in_row: Vec<usize>
}

/// Solve LAP problem given cost matrix
/// This is an implementation of the LAPJV algorithm described in:
/// R. Jonker, A. Volgenant. A Shortest Augmenting Path Algorithm for
/// Dense and Sparse Linear Assignment Problems. Computing 38, 325-340
/// (1987)
pub fn lapjv<T>(costs: &Matrix<T>) -> Result<(Vec<usize>, Vec<usize>), LapJVError> where T: LapJVCost {
    LapJV::new(costs).solve()
}

pub fn cost<T>(input: &Matrix<T>, x: &[usize]) -> T where T: LapJVCost {
    (0..x.len()).into_iter().fold(T::zero(), |acc, i| acc + input[(i, x[i])])
}

/// Solve LAP problem given cost matrix
/// This is an implementation of the LAPJV algorithm described in:
/// R. Jonker, A. Volgenant. A Shortest Augmenting Path Algorithm for
/// Dense and Sparse Linear Assignment Problems. Computing 38, 325-340
/// (1987)
impl <'a, T>LapJV<'a, T> where T: LapJVCost {
    pub fn new(costs: &'a Matrix<T>) -> Self {
        let dim = costs.dim().0; // square matrix dimensions
        let free_rows = Vec::with_capacity(dim); // list of unassigned rows.
        let v = Vec::with_capacity(dim);
        let in_row = vec![0; dim];
        let in_col = Vec::with_capacity(dim);
        Self {
            costs,
            dim,
            free_rows,
            v,
            in_col,
            in_row
        }
    }

    pub fn solve(mut self) ->  Result<(Vec<usize>, Vec<usize>), LapJVError> {
        if self.costs.dim().0 != self.costs.dim().1 {
            return Err(LapJVError("Input error: matrix is not square"))
        }
        self.ccrrt_dense();

        let mut i = 0;
        while !self.free_rows.is_empty() && i < 2 {
            self.carr_dense();
            i+= 1;
        }

        if !self.free_rows.is_empty() {
            self.ca_dense()?;
        }

        Ok((self.in_row, self.in_col))
    }

    fn ccrrt_dense(&mut self) {
        let mut unique = vec![true; self.dim];
        let mut in_row_not_set = vec![true; self.dim];

        for row in self.costs.lanes(ndarray::Axis(0)) {
            let (min_index, min_value) = row.indexed_iter()
                .skip(1)
                .fold((0, row[0]), |(old_idx, old_min), (new_idx, &new_min)| if new_min < old_min { (new_idx, new_min) } else { (old_idx, old_min) });
            self.in_col.push(min_index);
            self.v.push(min_value);
        }

        // for ((i, j), &c) in self.costs.indexed_iter() {
        //     if c < self.v[j] {
        //         self.v[j] = c;
        //         self.in_col[j] = i;
        //     }
        // }

        for j in (0..self.dim).into_iter().rev() {
            let i = self.in_col[j];
            if in_row_not_set[i] {
                self.in_row[i] = j;
                in_row_not_set[i] = false;
            } else {
                unique[i] = false;
                self.in_col[j] = std::usize::MAX;
            }
        }

        for i in 0..self.dim {
            if in_row_not_set[i] {
                self.free_rows.push(i);
            } else if unique[i] {
                let j = self.in_row[i];
                let mut min = T::max_value();
                for j2 in 0..self.dim {
                    if j2 == j {
                        continue;
                    }
                    let c = self.reduced_cost(i, j2);
                    if c < min {
                        min = c;
                    }
                }
                self.v[j] -= min;
            }
        }
    }

    // Augmenting row reduction for a dense cost matrix.
    fn carr_dense(&mut self) {
        // AUGMENTING ROW REDUCTION
        // scan all free rows.
        // in some cases, a free row may be replaced with another one to be scanned next.
        let dim = self.dim;
        let mut current = 0;
        let mut new_free_rows = 0; // start list of rows still free after augmenting row reduction.
        let mut rr_cnt = 0;
        let num_free_rows = self.free_rows.len();

        while current < num_free_rows {
            rr_cnt += 1;
            let free_i = self.free_rows[current];
            current += 1;
            // find minimum and second minimum reduced cost over columns.
            let (v1, v2, mut j1, j2) = find_umins_plain(self.costs.row(free_i), &self.v);

            let mut i0 = self.in_col[j1];
            let v1_new = self.v[j1] - (v2 - v1);
            let v1_lowers = v1_new < self.v[j1];  // the trick to eliminate the epsilon bug

            if rr_cnt < current * dim {
                if v1_lowers {
                    // change the reduction of the minimum column to increase the minimum
                    // reduced cost in the row to the subminimum.
                    self.v[j1] = v1_new;
                } else if i0 != std::usize::MAX && j2.is_some() { // minimum and subminimum equal.
                    // minimum column j1 is assigned.
                    // swap columns j1 and j2, as j2 may be unassigned.
                    j1 = j2.unwrap();
                    i0 = self.in_col[j1];
                }
                if i0 != std::usize::MAX { // minimum column j1 assigned earlier.
                    if v1_lowers {
                        // put in current k, and go back to that k.
                        // continue augmenting path i - j1 with i0.
                        current -= 1;
                        self.free_rows[current] = i0;
                    } else {
                        // no further augmenting reduction possible.
                        // store i0 in list of free rows for next phase.
                        self.free_rows[new_free_rows] = i0;
                        new_free_rows += 1;
                    }
                }
            } else {
                if i0 != std::usize::MAX {
                    self.free_rows[new_free_rows] = i0;
                    new_free_rows += 1;
                }
            }
            self.in_row[free_i] = j1;
            self.in_col[j1] = free_i;
        }
        self.free_rows.truncate(new_free_rows);
    }


    // Augment for a dense cost matrix.
    fn ca_dense(&mut self) -> Result<(), LapJVError> {
        let dim = self.dim;
        let mut pred = vec![0; dim];

        let free_rows = std::mem::replace(&mut self.free_rows, vec![]);
        for freerow in free_rows {
            trace!("looking at free_i={}", freerow);

            let mut i = std::usize::MAX;
            let mut k = 0;
            let mut j = self.find_path_dense(freerow, &mut pred);
            assert!(j < dim);
            while i != freerow {
                i = pred[j];
                self.in_col[j] = i;

                std::mem::swap(&mut j, &mut self.in_row[i]);
                k += 1;
                if k >= dim {
                    return Err(LapJVError("Error: ca_dense will not finish"))
                }
            }
        }
        Ok(())
    }

        /// Single iteration of modified Dijkstra shortest path algorithm as explained in the JV paper.
    /// return The closest free column index.
    fn find_path_dense(&mut self, start_i: usize, pred: &mut [usize]) -> usize {
        let dim = self.dim;
        let mut collist = Vec::with_capacity(dim); // list of columns to be scanned in various ways.
        let mut d = Vec::with_capacity(dim); // 'cost-distance' in augmenting path calculation.

        let mut lo = 0;
        let mut hi = 0;
        let mut n_ready = 0;

        // Dijkstra shortest path algorithm.
        // runs until unassigned column added to shortest path tree.
        for i in 0..dim {
            collist.push(i);
            d.push(self.reduced_cost(start_i, i));
            pred[i] = start_i;
        }

        trace!("d: {:?}", d);
        let mut final_j = None;
        while  final_j.is_none() {
            if lo == hi {
                trace!("{}..{} -> find", lo, hi);
                n_ready = lo;
                hi = find_dense(dim, lo, &d, &mut collist);
                trace!("check {}..{}", lo, hi);
                // check if any of the minimum columns happens to be unassigned.
                // if so, we have an augmenting path right away.
                for &j in collist.iter().take(hi).skip(lo) {
                    if self.in_col[j] == std::usize::MAX {
                        final_j = Some(j);
                    }
                }
            }

            if final_j.is_none() {
                trace!("{}..{} -> scan", lo, hi);
                let maybe_final_j = self.scan_dense(&mut lo, &mut hi, &mut d, &mut collist, pred);
                if let Some(val) = maybe_final_j {
                    final_j = Some(val);
                }
            }
        }

        trace!("found final_j={:?}", final_j);
        let mind = d[collist[lo]];
        for &j in collist.iter().take(n_ready) {
            self.v[j] += d[j] - mind;
        }
        final_j.unwrap()
    }
    // Scan all columns in TODO starting from arbitrary column in SCAN
    // and try to decrease d of the TODO columns using the SCAN column.
    fn scan_dense(&self, plo: &mut usize, phi: &mut usize, d: &mut [T], collist: &mut [usize], pred: &mut [usize]) -> Option<usize>  {
        let mut lo = *plo;
        let mut hi = *phi;
        while lo != hi {
            let j = collist[lo];
            lo += 1;
            let i = self.in_col[j];
            let mind = d[j];
            let h = self.reduced_cost(i, j) - mind;
            // For all columns in TODO
            for k in hi..collist.len() {
                let j = collist[k];
                let cred_ij = self.reduced_cost(i, j) - h;
                if cred_ij < d[j] {
                    d[j] = cred_ij;
                    pred[j] = i;
                    if (cred_ij - mind).abs() < T::epsilon() {
                    // if cred_ij == mind {
                        if self.in_col[j] == std::usize::MAX {
                            return Some(j);
                        }
                        collist[k] = collist[hi];
                        collist[hi] = j;
                        hi += 1;
                    }
                }
            }
        }
        // Note: only change lo and hi if the item was not found
        *plo = lo;
        *phi = hi;
        None
    }

    #[inline(always)]
    fn cost(&self, i: usize, j: usize) -> T {
        self.costs[(i, j)]
    }

    #[inline(always)]
    fn reduced_cost(&self, i: usize, j: usize) -> T {
        self.cost(i, j) - self.v[j]
    }
}

fn find_dense<T>(dim: usize, lo: usize, d: &[T], collist: &mut [usize]) -> usize  where T: LapJVCost {
    let mut hi  = lo + 1;
    let mut mind = d[collist[lo]];
    for k in hi..dim {
        let j = collist[k];
        let h = d[j];
        if h <= mind {
            if h < mind { // new minimum.
                hi = lo; // restart list at index low.
                mind = h;
            }
            // new index with same minimum, put on undex up, and extend list.
            collist[k] = collist[hi];
            collist[hi] = j;
            hi += 1;
        }
    }
    hi
}

// Finds minimum and second minimum from a row, returns (min, second_min, min_index, second_min_index)
#[inline(always)]
fn find_umins_plain<T>(local_cost: ndarray::ArrayView1<T>, v: &[T]) -> (T, T, usize, Option<usize>)  where T: LapJVCost{
    let mut umin = local_cost[0] - v[0];
    let mut usubmin = T::max_value();
    let mut j1 = 0;
    let mut j2 = None;
    for j in 1..local_cost.dim() {
        let h = local_cost[j] - v[j];
        if h < usubmin {
            if h >= umin {
                usubmin = h;
                j2 = Some(j);
            } else {
                usubmin = umin;
                umin = h;
                j2 = Some(j1);
                j1 = j;
            }
        }
    }
    (umin, usubmin, j1, j2)
}

#[cfg(test)]
mod tests {
    use super::*;
    use rand;

    #[test]
    fn it_works() {
        let m = Matrix::from_shape_vec((3,3), vec![1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0]).unwrap();
        let result = lapjv(&m).unwrap();
        assert_eq!(result.0, vec![2, 0, 1]);
        assert_eq!(result.1, vec![1, 2, 0]);
    }

    #[test]
    fn test_solve_random10() {
        let (m, result) = solve_random10();
        let cost = cost(&m, &result.0);
        assert_eq!(cost, 1071.0);
        assert_eq!(result.0, vec![7,9,3,4,1,0,5,6,2,8]);
    }

    #[test]
    fn test_solve_inf1() {
        let c = vec![
            std::f64::INFINITY, 643.0, 717.0,   2.0, 946.0, 534.0, 242.0, 235.0, 376.0, 839.0,
            std::f64::INFINITY, 141.0, 799.0, 180.0, 386.0, 745.0, 592.0, 822.0, 421.0,  42.0,
            std::f64::INFINITY, 369.0, 831.0,  67.0, 258.0, 549.0, 615.0, 529.0, 458.0, 524.0,
            std::f64::INFINITY, 649.0, 287.0, 910.0,  12.0, 820.0,  31.0,  92.0, 217.0, 555.0,
            std::f64::INFINITY,  81.0, 568.0, 241.0, 292.0, 653.0, 417.0, 652.0, 630.0, 788.0,
            std::f64::INFINITY, 822.0, 788.0, 166.0, 122.0, 690.0, 304.0, 568.0, 449.0, 214.0,
            std::f64::INFINITY, 469.0, 584.0, 633.0, 213.0, 414.0, 498.0, 500.0, 317.0, 391.0,
            std::f64::INFINITY, 581.0, 183.0, 420.0,  16.0, 748.0,  35.0, 516.0, 639.0, 356.0,
            std::f64::INFINITY, 921.0,  67.0,  33.0, 592.0, 775.0, 780.0, 335.0, 464.0, 788.0,
            123.0, 455.0, 950.0,  25.0,  22.0, 576.0, 969.0, 122.0,  86.0,  74.0,
        ];
        let m = Matrix::from_shape_vec((10,10), c).unwrap();
        let result = lapjv(&m).unwrap();
        let cost = cost(&m, &result.0);
        assert_eq!(cost, 1403.0);
        assert_eq!(result.0, vec![7, 9, 3, 8, 1, 4, 5, 6, 2, 0]);
    }


    #[test]
    fn test_find_umins() {
        let m = Matrix::from_shape_vec((3,3), vec![25.0,0.0,15.0,4.0,5.0,6.0,7.0,8.0,9.0]).unwrap();
        let result = find_umins_plain(m.row(0), &vec![0.0,0.0,0.0]);
        println!("Result: {:?}", result);
        assert_eq!(result,(0.0, 15.0, 1, Some(2)));
    }

    #[test]
    fn test_random() {
        use rand::Rng;
        let mut rng = rand::thread_rng();

        const DIM: usize = 512;
        let mut m = Vec::with_capacity(DIM*DIM);
        for _ in 0..DIM*DIM {
            m.push(rng.next_f64()*100.0);
        }
        let m = Matrix::from_shape_vec((DIM,DIM), m).unwrap();
        let _result = lapjv(&m).unwrap();
    }

    fn solve_random10() -> (Matrix<f64>, (Vec<usize>, Vec<usize>)) {
        const N: usize = 10;
        let c = vec![
            612.0, 643.0, 717.0,   2.0, 946.0, 534.0, 242.0, 235.0, 376.0, 839.0,
            224.0, 141.0, 799.0, 180.0, 386.0, 745.0, 592.0, 822.0, 421.0,  42.0,
            241.0, 369.0, 831.0,  67.0, 258.0, 549.0, 615.0, 529.0, 458.0, 524.0,
            231.0, 649.0, 287.0, 910.0,  12.0, 820.0,  31.0,  92.0, 217.0, 555.0,
            912.0,  81.0, 568.0, 241.0, 292.0, 653.0, 417.0, 652.0, 630.0, 788.0,
            32.0, 822.0, 788.0, 166.0, 122.0, 690.0, 304.0, 568.0, 449.0, 214.0,
            441.0, 469.0, 584.0, 633.0, 213.0, 414.0, 498.0, 500.0, 317.0, 391.0,
            798.0, 581.0, 183.0, 420.0,  16.0, 748.0,  35.0, 516.0, 639.0, 356.0,
            351.0, 921.0,  67.0,  33.0, 592.0, 775.0, 780.0, 335.0, 464.0, 788.0,
            771.0, 455.0, 950.0,  25.0,  22.0, 576.0, 969.0, 122.0,  86.0,  74.0,
        ];
        let m = Matrix::from_shape_vec((N,N), c).unwrap();
        let result = lapjv(&m).unwrap();
        (m, result)
    }

    #[cfg(feature = "nightly")]
    mod benches {
        use test::Bencher;
        use super::*;

        #[bench]
        fn bench_solve_random10(b: &mut Bencher) {
            b.iter(|| test_solve_random10());
        }

        #[bench]
        fn bench_solve_random_inf1(b: &mut Bencher) {
            b.iter(|| test_solve_random10());
        }
    }
}