1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
//! [β-reduction](https://en.wikipedia.org/wiki/Beta_normal_form) for lambda `Term`s

use term::*;
use term::Term::*;
use self::Closure::*;
use self::Expression::*;
use std::collections::VecDeque;

#[derive(Debug, PartialEq, Clone)]
enum Closure {
    Depth(usize),
    TermInEnv(Term, Environment)
}

#[derive(Debug, PartialEq)]
enum Expression {
    Evaluation(Closure),
    Application(Box<Expression>, Term, Environment)
}

type Environment = VecDeque<Closure>;

fn whnf(term: Term, mut env: Environment) -> Expression {
    match term {
        Var(i) => match env.remove(i - 1) {
            Some(Depth(i)) => Evaluation(Depth(i)),
            Some(TermInEnv(t, e)) => whnf(t, e),
            None => unreachable!()
        },
        Abs(t) => Evaluation(TermInEnv(Abs(t), env)),
        App(lhs, rhs) => match whnf(*lhs, env.clone()) { // TODO: try to remove this clone()
            Evaluation(TermInEnv(Abs(lhs2), mut env2)) => {
                env2.push_front(TermInEnv(*rhs, env));
                whnf(*lhs2, env2)
            },
            expr => Application(Box::new(expr), *rhs, env)
        }
    }
}

fn reduce(depth: usize, exp: Expression) -> Term {
    match exp {
        Application(lhs, rhs, env) => app(reduce(depth, *lhs), nf(depth, rhs, env)),
        Evaluation(TermInEnv(Abs(term), mut env)) => {
            env.push_front(Depth(depth));
            abs(nf(depth + 1, *term, env))
        },
        Evaluation(TermInEnv(term, _)) => term,
        Evaluation(Depth(i)) => Var(depth - i)
    }
}

fn nf(depth: usize, term: Term, env: Environment) -> Term {
    reduce(depth, whnf(term, env))
}

/// Returns a term reduced to its normal form. Consumes its argument.
///
/// # Example
///
/// ```
/// use lambda_calculus::booleans::{if_else, tru};
/// use lambda_calculus::arithmetic::{zero, one, succ};
/// use lambda_calculus::reduction::normalize;
///
/// assert_eq!(normalize(succ().app(zero())), one());
/// assert_eq!(normalize(if_else().app(tru()).app(one()).app(zero())), one());
/// ```
pub fn normalize(term: Term) -> Term {
    nf(0, term, VecDeque::new())
}

/// Set to `true` to see all the steps of β-reductions. The default is `false`.
pub const SHOW_REDUCTIONS: bool = false;

impl Term {
    /// Performs a single normal-order β-reduction on `self`.
    ///
    /// # Example
    ///
    /// ```
    /// use lambda_calculus::arithmetic::succ;
    ///
    /// // SUCC := λ λ λ 2 (3 2 1), ONE := λ λ 2 1
    /// let mut succ_one = succ().app(1.into());
    /// succ_one.beta_once();
    ///
    /// assert_eq!(&*format!("{}", succ_one), "λλ2((λλ21)21)");
    /// ```
    pub fn beta_once(&mut self) {
        match *self {
            Var(_) => (),
            Abs(_) => self.unabs_ref_mut().unwrap().beta_once(),
            App(_, _) => {
                let copy = self.clone();
                if let Ok(result) = copy.eval() {
                    if SHOW_REDUCTIONS { println!("    {} reduces to {}", self, result) }
                    *self = result
                } else {
                    self.lhs_ref_mut().unwrap().beta_once();
                    self.rhs_ref_mut().unwrap().beta_once()
                }
            }
        }
    }

    /// Performs full normal-order β-reduction on `self`.
    ///
    /// # Example
    ///
    /// ```
    /// use lambda_calculus::arithmetic::pred;
    ///
    /// let mut pred_one = pred().app(1.into());
    /// pred_one.beta_full();
    ///
    /// assert_eq!(pred_one, 0.into());
    /// ```
    pub fn beta_full(&mut self) {
        if SHOW_REDUCTIONS { println!("reducing {}", self) }
        let mut tmp = self.clone();
        self.beta_once();

        while tmp != *self {
            tmp = self.clone();
            if SHOW_REDUCTIONS { println!("reducing {}", self) }
            self.beta_once();
        }

        if SHOW_REDUCTIONS { println!("    doesn't reduce") }
    }
}

/// Performs full normal-order β-reduction on a `Term`, consuming it in the process.
///
/// # Example
///
/// ```
/// use lambda_calculus::arithmetic::pred;
/// use lambda_calculus::reduction::beta_full;
///
/// let pred_one = pred().app(1.into());
///
/// assert_eq!(beta_full(pred_one), 0.into());
/// ```
pub fn beta_full(mut term: Term) -> Term {
    term.beta_full();
    term
}

/// Performs a single normal-order β-reduction on `self`.
///
/// # Example
///
/// ```
/// use lambda_calculus::arithmetic::succ;
/// use lambda_calculus::reduction::beta_once;
///
/// // SUCC := λ λ λ 2 (3 2 1), ONE := λ λ 2 1
/// let succ_one = succ().app(1.into());
///
/// assert_eq!(&*format!("{}", beta_once(succ_one)), "λλ2((λλ21)21)");
/// ```
pub fn beta_once(mut term: Term) -> Term {
    term.beta_once();
    term
}

#[cfg(test)]
mod test {

    #[test]
    fn weak_head_normal_form() {
        // TODO
    }
}