1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
//! This crate provides data structures for context-free grammars and LR(1) state machines, and an
//! algorithm to convert a context-free grammar into an LR(1) state machine by the LALR(1)
//! construction.
//!
//! To use this crate, you should create a [`Grammar`](struct.Grammar.html) and call
//! [`lalr1`](struct.Grammar.html#method.lalr1). Then you can use the
//! [`LR1ParseTable`](struct.LR1ParseTable.html) to create your own parser.

use std::collections::{btree_map, BTreeSet, BTreeMap, VecDeque};
use std::fmt::{self, Debug, Display};
use std::cell::{RefCell};
use std::cmp;
pub use Symbol::*;

#[cfg(test)] mod tests;

// "T" = terminal, and "N" = nonterminal.

/// A symbol in a context-free grammar.
#[derive(Ord,PartialOrd,Eq,PartialEq,Clone)]
pub enum Symbol<T, N> {
    Terminal(T),
    Nonterminal(N),
}

impl<T: Display, N: Display> Display for Symbol<T, N> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        match *self {
            Terminal(ref t) => t.fmt(f),
            Nonterminal(ref n) => n.fmt(f),
        }
    }
}

impl<T: Debug, N: Debug> Debug for Symbol<T, N> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        match *self {
            Terminal(ref t) => t.fmt(f),
            Nonterminal(ref n) => n.fmt(f),
        }
    }
}
macro_rules! item {
    ($x: item) => ($x);
}
// Derive the {Partial,}{Eq,Ord} traits, based on the tuple implementations,
// for the given fields.
macro_rules! comparators {
    ($t: ident($($p: tt)+) ($($s: ident),+) ($($f: ident),+)) => {
        item!(impl<$($p)+> PartialEq for $t<$($p)+> where $($s: PartialEq),+ {
            fn eq(&self, other: &Self) -> bool {
                ($(self.$f),+) == ($(other.$f),+)
            }
        });
        item!(impl<$($p)+> Eq for $t<$($p)+> where $($s: Eq),+ {
        });
        item!(impl<$($p)+> PartialOrd for $t<$($p)+> where $($s: PartialOrd),+ {
            fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
                ($(self.$f),+).partial_cmp(&($(other.$f),+))
            }
        });
        item!(impl<$($p)+> Ord for $t<$($p)+> where $($s: Ord),+ {
            fn cmp(&self, other: &Self) -> std::cmp::Ordering {
                ($(self.$f),+).cmp(&($(other.$f),+))
            }
        });
    };
}

/// The right-hand side of a rule in a context-free grammar.
#[derive(Debug,Clone)]
pub struct Rhs<T, N, A> {
    pub syms: Vec<Symbol<T, N>>,
    /// An action associated with this rule.
    /// This can be any data you want to attach to a rule.
    ///
    /// This field is ignored by the `Eq` and `Ord` instances.
    pub act: A,
}
comparators!(Rhs(T, N, A) (T, N) (syms));

/// An item in an LR(0) state machine, consisting of a rule with a distinguished current position.
#[derive(Debug)]
pub struct Item<'a, T: 'a, N: 'a, A: 'a> {
    pub lhs: &'a N,
    pub rhs: &'a Rhs<T, N, A>,
    pub pos: usize,
}
comparators!(Item('a, T, N, A) (T, N) (lhs, rhs, pos));

impl<'a, T, N, A> Clone for Item<'a, T, N, A> {
    fn clone(&self) -> Item<'a, T, N, A> {
        Item { lhs: self.lhs, rhs: self.rhs, pos: self.pos }
    }
}

/// A set of `Item`s, forming a state in an LR(0) state machine.
#[derive(Debug)]
pub struct ItemSet<'a, T: 'a, N: 'a, A: 'a> {
    pub items: BTreeSet<Item<'a, T, N, A>>,
}
comparators!(ItemSet('a, T, N, A) (T, N) (items));

impl<'a, T, N, A> Clone for ItemSet<'a, T, N, A> {
    fn clone(&self) -> ItemSet<'a, T, N, A> {
        ItemSet { items: self.items.clone() }
    }
}

/// A context-free grammar.
#[derive(Debug)]
pub struct Grammar<T, N, A> {
    /// The rules for each nonterminal.
    pub rules: BTreeMap<N, Vec<Rhs<T, N, A>>>,
    /// The starting state.
    /// There must be exactly one rule of the form "`start` -> N", for some nonterminal N.
    /// `start` must not be referred to elsewhere in the grammar.
    pub start: N,
}

/// An LR(0) state machine.
#[derive(Debug)]
pub struct LR0StateMachine<'a, T: 'a, N: 'a, A: 'a> {
    /// A vector of states, each of which consists of an item set and a set of transitions.
    ///
    /// State 0 is the starting state.
    pub states: Vec<(ItemSet<'a, T, N, A>, BTreeMap<&'a Symbol<T, N>, usize>)>,
    /// The starting state of the associated context-free grammar.
    pub start: &'a N,
}

/// An action in an LR(1) parse table.
#[derive(Debug)]
pub enum LRAction<'a, T: 'a, N: 'a, A: 'a> {
    /// Reduce by the given rule.
    Reduce(&'a N, &'a Rhs<T, N, A>),
    /// Shift, moving to the given state.
    Shift(usize),
    /// Accept, ending the parse.
    Accept,
}

/// A state in an LR(1) parse table.
#[derive(Debug)]
pub struct LR1State<'a, T: 'a, N: 'a, A: 'a> {
    /// The action if the lookahead is EOF.
    pub eof: Option<LRAction<'a, T, N, A>>,
    /// The actions for each non-EOF lookahead.
    pub lookahead: BTreeMap<&'a T, LRAction<'a, T, N, A>>,
    /// The state to jump to when shifting a nonterminal (because of a reduce rule).
    pub goto: BTreeMap<&'a N, usize>,
}

/// An LR(1) parse table.
#[derive(Debug)]
pub struct LR1ParseTable<'a, T: 'a, N: 'a, A: 'a> {
    pub states: Vec<LR1State<'a, T, N, A>>,
}

/// A conflict detected while trying to construct an LR(1) parse table.
#[derive(Debug)]
pub enum LR1Conflict<'a, T: 'a, N: 'a, A: 'a> {
    /// A reduce-reduce conflict.
    ReduceReduce {
        /// The LR(0) state in which the conflict occurs.
        state: ItemSet<'a, T, N, A>,
        /// The token leading to the conflict, or `None` if the token is EOF.
        token: Option<&'a T>,
        /// The first conflicting rule.
        r1: (&'a N, &'a Rhs<T, N, A>),
        /// The second conflicting rule.
        r2: (&'a N, &'a Rhs<T, N, A>),
    },
    /// A shift-reduce conflict.
    ShiftReduce {
        /// The LR(0) state in which the conflict appears.
        state: ItemSet<'a, T, N, A>,
        /// The token leading to the conflict, or `None` if the token is EOF.
        token: Option<&'a T>,
        /// The reduce rule involved in the conflict.
        rule: (&'a N, &'a Rhs<T, N, A>),
    },
}

impl<T: Ord, N: Ord, A> Grammar<T, N, A> {
    /// Create the LR(0) state machine for a grammar.
    pub fn lr0_state_machine<'a>(&'a self) -> LR0StateMachine<'a, T, N, A> {
        struct S<'a, T: 'a, N: 'a, A: 'a> {
            states: Vec<(ItemSet<'a, T, N, A>, BTreeMap<&'a Symbol<T, N>, usize>)>,
            item_sets: BTreeMap<ItemSet<'a, T, N, A>, usize>,
            nubs: BTreeMap<ItemSet<'a, T, N, A>, usize>,
        }
        impl<'a, T: Ord, N: Ord, A> S<'a, T, N, A> {
            fn item_set(&mut self, item_set: ItemSet<'a, T, N, A>) -> usize {
                if let Some(&ix) = self.item_sets.get(&item_set) {
                    return ix;
                }
                let ix = self.states.len();
                self.item_sets.insert(item_set.clone(), ix);
                self.states.push((item_set, BTreeMap::new()));
                ix
            }
            fn complete_nub(&mut self, grammar: &'a Grammar<T, N, A>, nub: ItemSet<'a, T, N, A>) -> usize {
                if let Some(&ix) = self.nubs.get(&nub) {
                    return ix;
                }
                let mut completed: BTreeSet<_> = nub.items.clone();
                let mut to_add: VecDeque<_> = nub.items.iter().cloned().collect();
                while let Some(item) = to_add.pop_front() {
                    if let Some(&Nonterminal(ref n)) = item.rhs.syms.get(item.pos) {
                        if let Some(rules) = grammar.rules.get(n) {
                            for rhs in rules.iter() {
                                let new_item = Item {
                                    lhs: n,
                                    rhs: rhs,
                                    pos: 0,
                                };
                                if !completed.contains(&new_item) {
                                    to_add.push_back(new_item.clone());
                                    completed.insert(new_item);
                                }
                            }
                        }
                    }
                }
                let ix = self.item_set(ItemSet { items: completed });
                self.nubs.insert(nub, ix);
                ix
            }
        }
        fn advance<'a, 'b, T, N, A>(i: &'b Item<'a, T, N, A>) -> Option<(&'a Symbol<T, N>, Item<'a, T, N, A>)> {
            i.rhs.syms.get(i.pos).map(|s| {
                (s, Item {
                    lhs: i.lhs,
                    rhs: i.rhs,
                    pos: i.pos + 1,
                })
            })
        }
        let mut state: S<'a, T, N, A> = S {
            states: vec![],
            item_sets: BTreeMap::new(),
            nubs: BTreeMap::new(),
        };
        let mut finished = 0;
        state.complete_nub(self, ItemSet { items: { let mut r = BTreeSet::new(); r.insert(Item {
            lhs: &self.start,
            rhs: &self.rules.get(&self.start).unwrap()[0],
            pos: 0,
        }); r } });
        while finished < state.states.len() {
            let mut next_nubs = BTreeMap::new();
            for item in state.states[finished].0.items.iter() {
                if let Some((sym, next)) = advance(item) {
                    next_nubs.entry(sym).or_insert(BTreeSet::new()).insert(next);
                }
            }
            for (sym, items) in next_nubs.into_iter() {
                let ix = state.complete_nub(self, ItemSet { items: items });
                state.states[finished].1.insert(sym, ix);
            }
            finished += 1;
        }
        LR0StateMachine {
            states: state.states,
            start: &self.start,
        }
    }

    /// Compute the FIRST sets of the grammar.
    /// Returns a map from nonterminal to (first set, nullable).
    pub fn first_sets(&self) -> BTreeMap<&N, (BTreeSet<&T>, bool)> {
        let mut r = BTreeMap::new();
        for (lhs, _) in self.rules.iter() {
            r.insert(lhs, RefCell::new((BTreeSet::new(), false)));
        }
        loop {
            let mut changed = false;

            // the `zip` is okay because `self.rules` and `r` have the same order
            for ((lhs, rhses), (_, cell)) in self.rules.iter().zip(r.iter()) {
                let mut cell = cell.borrow_mut();
                'outer: for rhs in rhses.iter() {
                    for sym in rhs.syms.iter() {
                        match *sym {
                            Terminal(ref t) => {
                                if cell.0.insert(t) {
                                    changed = true;
                                }
                                continue 'outer;
                            }
                            Nonterminal(ref n) => if n == lhs {
                                // refers to `lhs`; no need to add own set elements
                                if !cell.1 {
                                    continue 'outer;
                                }
                            } else {
                                let them = r.get(n).unwrap().borrow();
                                for &t in them.0.iter() {
                                    if cell.0.insert(t) {
                                        changed = true;
                                    }
                                }
                                if !them.1 {
                                    // stop if it's not nullable
                                    continue 'outer;
                                }
                            },
                        }
                    }
                    if !cell.1 {
                        // if we got here, then we must be nullable
                        cell.1 = true;
                        changed = true;
                    }
                }
            }
            if !changed {
                break;
            }
        }
        r.into_iter().map(|(k, v)| (k, v.into_inner())).collect()
    }

    /// Compute the FOLLOW sets of the grammar.
    /// Returns a map mapping from nonterminal to (follow set, whether follow set contains EOF)
    pub fn follow_sets<'a>(&'a self, first: BTreeMap<&'a N, (BTreeSet<&'a T>, bool)>) -> BTreeMap<&'a N, (BTreeSet<&'a T>, bool)> {
        let mut r = BTreeMap::new();
        for (lhs, _) in self.rules.iter() {
            r.insert(lhs, (BTreeSet::new(), *lhs == self.start));
        }
        loop {
            let mut changed = false;
            for (lhs, rhses) in self.rules.iter() {
                for rhs in rhses.iter() {
                    let mut follow = r.get(lhs).unwrap().clone();
                    for sym in rhs.syms.iter().rev() {
                        match *sym {
                            Terminal(ref t) => {
                                follow.0.clear();
                                follow.1 = false;
                                follow.0.insert(t);
                            }
                            Nonterminal(ref n) => {
                                let s = r.get_mut(n).unwrap();
                                for &t in follow.0.iter() {
                                    if s.0.insert(t) {
                                        changed = true;
                                    }
                                }
                                if !s.1 && follow.1 {
                                    s.1 = true;
                                    changed = true;
                                }
                                let &(ref f, nullable) = first.get(n).unwrap();
                                if !nullable {
                                    follow.0.clear();
                                    follow.1 = false;
                                }
                                follow.0.extend(f.iter().map(|x| *x));
                            }
                        }
                    }
                }
            }
            if !changed {
                break;
            }
        }
        r
    }

    /// Try to create an LALR(1) parse table out of the grammar.
    ///
    /// You can tweak the behaviour of the parser in two ways:
    ///
    /// - `reduce_on` is a predicate, allowing you to control certain reduce rules based on the
    ///   lookahead token. This function takes two parameters: the rule, given by its right-hand
    ///   side, and the lookahead token (or `None` for EOF). You can use this to resolve
    ///   shift-reduce conflicts. For example, you can solve the "dangling else" problem by
    ///   forbidding the reduce action on an `else` token.
    /// - `priority_of` allows you to resolve reduce-reduce conflicts, by giving reduce rules
    ///   different "priorities". This takes the same parameters as `reduce_on`, so you can vary
    ///   the priority based on the lookahead token. If there would be a reduce-reduce conflict
    ///   between rules, but they have different priority, the one with higher priority is used.
    pub fn lalr1<'a, FR, FO>(&'a self, mut reduce_on: FR, mut priority_of: FO)
        -> Result<LR1ParseTable<'a, T, N, A>, LR1Conflict<'a, T, N, A>>
    where FR: FnMut(&Rhs<T, N, A>, Option<&T>) -> bool,
          FO: FnMut(&Rhs<T, N, A>, Option<&T>) -> i32 {
        let state_machine = self.lr0_state_machine();
        let extended = state_machine.extended_grammar();
        let first_sets = extended.first_sets();
        let follow_sets = extended.follow_sets(first_sets);
        let mut r = LR1ParseTable {
            states: state_machine.states.iter().map(|_| LR1State {
                eof: None,
                lookahead: BTreeMap::new(),
                goto: BTreeMap::new(),
            }).collect(),
        };

        // add shifts
        for (i, &(_, ref trans)) in state_machine.states.iter().enumerate() {
            for (&sym, &target) in trans.iter() {
                match *sym {
                    Terminal(ref t) => {
                        let z = r.states[i].lookahead.insert(t, LRAction::Shift(target));
                        // can't have conflicts yet
                        debug_assert!(z.is_none());
                    }
                    Nonterminal(ref n) => {
                        let z = r.states[i].goto.insert(n, target);
                        debug_assert!(z.is_none());
                    }
                }
            }
        }

        // add reductions
        for ((&(start_state, lhs), rhss),
             (&&(s2, l2), &(ref follow, eof)))
            in extended.rules.iter().zip(follow_sets.iter()) {

            debug_assert_eq!(start_state, s2);
            debug_assert!(lhs == l2);

            for &Rhs { syms: _, act: (end_state, rhs) }
                in rhss.iter() {

                for &&t in follow.iter().filter(|&&&t| reduce_on(rhs, Some(t))) {
                    match r.states[end_state].lookahead.entry(t) {
                        btree_map::Entry::Vacant(v) => {
                            v.insert(LRAction::Reduce(lhs, rhs));
                        }
                        btree_map::Entry::Occupied(mut v) => {
                            match *v.get_mut() {
                                LRAction::Reduce(l, r) if l == lhs
                                    && r as *const Rhs<T, N, A>
                                       == rhs as *const Rhs<T, N, A> => {
                                    // The cells match, so there's no conflict.
                                }
                                LRAction::Reduce(ref mut l, ref mut r) => match priority_of(r, Some(t)).cmp(&priority_of(rhs, Some(t))) {
                                    cmp::Ordering::Greater => {
                                        // `r` overrides `rhs` - do nothing.
                                    }
                                    cmp::Ordering::Less => {
                                        // `rhs` overrides `r`.
                                        *l = lhs;
                                        *r = rhs;
                                    }
                                    cmp::Ordering::Equal => {
                                        // Otherwise, we have a reduce/reduce conflict.
                                        return Err(LR1Conflict::ReduceReduce {
                                            state: state_machine.states[end_state].0.clone(),
                                            token: Some(t),
                                            r1: (*l, *r),
                                            r2: (lhs, rhs),
                                        });
                                    }
                                },
                                LRAction::Shift(_) => {
                                    return Err(LR1Conflict::ShiftReduce {
                                        state: state_machine.states[end_state].0.clone(),
                                        token: Some(t),
                                        rule: (lhs, rhs),
                                    });
                                }
                                LRAction::Accept => {
                                    unreachable!();
                                }
                            }
                        }
                    }
                }

                if eof && reduce_on(rhs, None) {
                    let state = &mut r.states[end_state];
                    if *lhs == self.start {
                        match state.eof {
                            Some(_) => unreachable!(),
                            _ => ()
                        }
                        state.eof = Some(LRAction::Accept);
                    } else {
                        match state.eof {
                            Some(LRAction::Reduce(l, r)) if l == lhs
                                && r as *const Rhs<T, N, A>
                                   == rhs as *const Rhs<T, N, A> => {
                                // no problem
                            }
                            Some(LRAction::Reduce(ref mut l, ref mut r)) => match priority_of(r, None).cmp(&priority_of(rhs, None)) {
                                cmp::Ordering::Greater => {
                                    // `r` overrides `rhs` - do nothing.
                                }
                                cmp::Ordering::Less => {
                                    // `rhs` overrides `r`.
                                    *l = lhs;
                                    *r = rhs;
                                }
                                cmp::Ordering::Equal => {
                                    // We have a reduce/reduce conflict.
                                    return Err(LR1Conflict::ReduceReduce {
                                        state: state_machine.states[end_state].0.clone(),
                                        token: None,
                                        r1: (*l, *r),
                                        r2: (lhs, rhs),
                                    });
                                }
                            },
                            Some(LRAction::Shift(_)) => {
                                return Err(LR1Conflict::ShiftReduce {
                                    state: state_machine.states[end_state].0.clone(),
                                    token: None,
                                    rule: (lhs, rhs),
                                });
                            }
                            Some(LRAction::Accept) => {
                                unreachable!();
                            }
                            None => {
                                state.eof = Some(LRAction::Reduce(lhs, rhs));
                            }
                        }
                    }
                }

            }
        }

        Ok(r)
    }
}

impl<'a, T: Ord, N: Ord, A> LR0StateMachine<'a, T, N, A> {
    /// Create an LALR(1) extended grammar, as described
    /// [here](http://web.cs.dal.ca/~sjackson/lalr1.html).
    pub fn extended_grammar(&self) -> Grammar<&'a T, (usize, &'a N), (usize, &'a Rhs<T, N, A>)> {
        let mut r: BTreeMap<(usize, &'a N), Vec<Rhs<&'a T, (usize, &'a N), (usize, &'a Rhs<T, N, A>)>>> = BTreeMap::new();
        for (ix, &(ref iset, _)) in self.states.iter().enumerate() {
            for item in iset.items.iter() {
                if item.pos == 0 {
                    let new_lhs = (ix, item.lhs);
                    let mut state = ix;
                    let new_rhs = Rhs {
                        syms: item.rhs.syms.iter().map(|sym| {
                            let old_st = state;
                            state = *self.states[old_st].1.get(sym).unwrap();
                            match *sym {
                                Terminal(ref t) => Terminal(t),
                                Nonterminal(ref n) => {
                                    let nt = (old_st, n);
                                    if let btree_map::Entry::Vacant(view) = r.entry(nt) {
                                        view.insert(vec![]);
                                    }
                                    Nonterminal(nt)
                                }
                            }
                        }).collect(),
                        act: (state, item.rhs),
                    };
                    r.entry(new_lhs).or_insert(vec![]).push(new_rhs);
                }
            }
        }
        Grammar {
            rules: r,
            start: (0, self.start),
        }
    }
}

impl<'a, T: Debug, N: Debug, A> LR0StateMachine<'a, T, N, A> {
    /// Print the state machine in graphviz format.
    pub fn print(&self) {
        println!(r#"
digraph G {{
    node [
        shape="box",
        style="rounded",
        penwidth=1,
        width=2.0
    ];"#);
        for (i, &(ref iset, ref trans)) in self.states.iter().enumerate() {
            print!("s{}[label=<", i);
            for item in iset.items.iter() {
                print!("{:?} →", item.lhs);
                for j in 0..item.pos {
                    print!(" {:?}", item.rhs.syms[j]);
                }
                print!(" •");
                for j in item.pos..item.rhs.syms.len() {
                    print!(" {:?}", item.rhs.syms[j]);
                }
                print!("<br />\n");
            }
            println!(">]");
            for (sym, &target) in trans.iter() {
                println!("s{} -> s{} [label=<{:?}>]", i, target, sym);
            }
        }
        println!("}}");
    }
}