kowalski-code-agent 0.5.0

Kowalski Code Agent: A Rust-based agent for interacting with Ollama models
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
# Kowalski Code Agent

A specialized AI agent for code analysis, refactoring, and documentation, built on the Kowalski framework. The Code Agent provides intelligent, language-aware code analysis and improvement suggestions for multiple programming languages.

## What is the Code Agent?

The Code Agent is an AI-powered assistant that combines large language models with language-specific static analysis tools. It helps developers analyze, refactor, and document code in languages like Java, Python, and Rust, providing actionable insights and recommendations.

### Core Capabilities

- **Multi-language Support**: Analyze Java, Python, Rust, and more
- **Code Metrics**: Compute lines, complexity, functions, classes, and more
- **Quality Suggestions**: Get actionable recommendations for code improvement
- **Error and Issue Detection**: Identify syntax errors, anti-patterns, and style violations
- **Refactoring**: Automated suggestions for code refactoring and organization
- **Documentation Generation**: Create or improve code documentation
- **Streaming AI Analysis**: Real-time, conversational code review and Q&A
- **Role-based Analysis**: Customizable analysis for different developer roles

## What Does It Do?

- **Code Ingestion**: Accepts code snippets or files for analysis
- **Static Analysis**: Computes metrics, detects issues, and checks style
- **AI-Powered Review**: Provides human-readable feedback and improvement suggestions
- **Refactoring**: Offers or applies refactoring suggestions
- **Documentation**: Generates or improves code documentation
- **Interactive Q&A**: Supports follow-up questions and iterative review

## Example Usage

```rust
use kowalski_code_agent::CodeAgent;
use kowalski_core::config::Config;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let config = Config::default();
    let mut code_agent = CodeAgent::new(config).await?;

    // Analyze Python code
    let python_code = "...";
    let analysis = code_agent.analyze_python(python_code).await?;
    println!("Suggestions: {:?}", analysis.suggestions);

    // Analyze Rust code
    let rust_code = "...";
    let analysis = code_agent.analyze_rust(rust_code).await?;
    println!("Rust Issues: {:?}", analysis.issues);

    Ok(())
}
```

## How Could It Be Extended?

- **Additional Language Support**: Add tools for C++, Go, JavaScript, etc.
- **Deeper Static Analysis**: Integrate with Clippy, pylint, SonarQube, etc.
- **Security Auditing**: Add static and dynamic security analysis tools
- **Performance Profiling**: Integrate with profilers for runtime analysis
- **Automated Test Generation**: Suggest or generate unit and integration tests
- **Continuous Integration**: Integrate with CI/CD pipelines for automated code review
- **Visualization**: Generate call graphs, dependency diagrams, and more

## Potential Benefits

### For Developers
- **Faster Code Review**: Automated, actionable feedback
- **Improved Code Quality**: Early detection of bugs and anti-patterns
- **Learning**: Understand best practices and idioms for each language

### For Teams
- **Consistency**: Enforce style and quality standards
- **Productivity**: Reduce manual review time
- **Onboarding**: Help new team members understand codebases

### For Organizations
- **Security**: Early detection of vulnerabilities
- **Maintainability**: Cleaner, more robust codebases
- **Scalability**: Handle large codebases and multiple languages

---

## Key Features of the Code Analysis Tools

Each tool provides:
- Metrics Analysis: Lines, characters, functions, classes, complexity
- Language-Specific Checks: Syntax, style, best practices
- Quality Suggestions: Specific recommendations for improvement
- Error Detection: Syntax errors, potential issues, anti-patterns
- Proper Tool Trait Implementation: Full integration with the Kowalski framework


## Three Comprehensive Examples

### Java Example (java_analysis.rs)

- Analyzes a Calculator class with arithmetic operations
- Demonstrates Java-specific analysis and suggestions
- Shows proper error handling and logging recommendations

### Python Example (python_analysis.rs)

- Analyzes a DataProcessor class with statistical operations
- Demonstrates PEP 8 compliance checking
- Shows Python-specific improvements and best practices

### Rust Example (rust_analysis.rs)

- Analyzes a DataProcessor struct with caching functionality
- Demonstrates Rust-specific safety and error handling analysis
- Shows ownership, borrowing, and memory safety considerations



# Output of java_analysis

-----

     Running `/opt/ml/kowalski/target/debug/examples/java_analysis`
☕ Starting Java Code Analysis...
Code Agent Conversation ID: 67677c04-2d1a-49e8-8b6d-8c18f7f180d9

📝 Java Code to Analyze:

import java.util.*;

public class Calculator {
    private int result;
    
    public Calculator() {
        this.result = 0;
    }
    
    public int add(int a, int b) {
        result = a + b;
        return result;
    }
    
    public int subtract(int a, int b) {
        result = a - b;
        return result;
    }
    
    public int multiply(int a, int b) {
        result = a * b;
        return result;
    }
    
    public double divide(int a, int b) {
        if (b == 0) {
            System.out.println("Error: Division by zero");
            return 0;
        }
        result = a / b;
        return (double) result;
    }
    
    public static void main(String[] args) {
        Calculator calc = new Calculator();
        System.out.println("Addition: " + calc.add(10, 5));
        System.out.println("Subtraction: " + calc.subtract(10, 5));
        System.out.println("Multiplication: " + calc.multiply(10, 5));
        System.out.println("Division: " + calc.divide(10, 5));
    }
}


📊 Java Analysis Results:
Language: java
Metrics: {
  "characters": 1008,
  "classes": 1,
  "comments": 0,
  "complexity": {
    "cyclomatic_complexity": 2,
    "for_loops": 0,
    "if_statements": 1,
    "level": "Low",
    "switch_statements": 0,
    "while_loops": 0
  },
  "imports": 1,
  "lines": 42,
  "methods": 8,
  "words": 122
}
Suggestions: ["Consider using a proper logging framework instead of System.out.println", "Main method found - ensure proper exception handling"]
Issues: []

🤖 AI Analysis:
**Code Analysis and Recommendations**

The provided Java code implements a basic calculator class with methods for addition, subtraction, multiplication, and division. The analysis highlights several areas for improvement.

### Code Quality and Best Practices

1. **Naming Conventions**: While the variable names `result` and `a`, `b` are concise, they do not follow standard Java naming conventions (e.g., using camelCase instead of underscore notation). Consider renaming them to `calculateResult` and `num1`, respectively.
2. **Method Signatures**: The methods have unclear return types for division (`double` or `int`). To avoid ambiguity, use a more explicit return type, such as `double` in the case of division by zero handling.
3. **Exception Handling**: Although we've handled division by zero explicitly, consider throwing an exception instead of printing an error message and returning 0. This approach is more robust and allows for better error handling.

### Code Improvements

1. **Extracting Methods**: Consider extracting separate methods for handling division by zero errors, calculating results in a loop, or performing input validation.
2. **Input Validation**: Add checks to ensure the inputs are valid (e.g., numbers only) before performing calculations.
3. **Code Organization**: Consider separating the calculator logic from the main method into its own class or module.

### Code Refactoring

Here's an updated version of the code incorporating these recommendations:

```java
import java.util.InputMismatchException;
import java.util.Scanner;

public class Calculator {
    private double result;

    public Calculator() {}

    public int add(int a, int b) {
        return (int) calculateResult(a, b);
    }

    public int subtract(int a, int b) {
        return (int) calculateResult(a, -b);
    }

    public int multiply(int a, int b) {
        return (int) calculateResult(a, 1 * b); // Use implicit multiplication
    }

    private double calculateResult(int num1, int num2) {
        if (num2 == 0) {
            throw new ArithmeticException("Division by zero");
        }
        return (double) num1 / num2;
    }

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.println("Enter numbers:");
        int num1 = getValidNumber(scanner, "First number: ");
        int num2 = getValidNumber(scanner, "Second number: ");

        Calculator calc = new Calculator();
        System.out.println("Addition: " + calc.add(num1, num2));
        System.out.println("Subtraction: " + calc.subtract(num1, num2));
        System.out.println("Multiplication: " + calc.multiply(num1, num2));
    }

    private static int getValidNumber(Scanner scanner, String prompt) {
        while (true) {
            try {
                System.out.print(prompt);
                return scanner.nextInt();
            } catch (InputMismatchException e) {
                System.out.println("Invalid input. Please enter a number.");
                scanner.next(); // Consume invalid input
            }
        }
    }
}
```

This refactored code includes:

* Improved variable names and method signatures
* Exception handling for division by zero errors
* Input validation using `Scanner` to ensure numbers are entered correctly
* Extracted methods for better organization and reusability

These changes enhance the overall quality of the code, making it more robust, maintainable, and efficient.
✅ Analysis complete!


🔍 Follow-up Analysis:
Based on the provided Java code, here are some specific improvements that can be made:

1. **Extract a separate class for Calculator Operations**: The current `Calculator` class has multiple methods (addition, subtraction, multiplication, division) that perform similar operations. Consider extracting each operation into its own separate method or even better, create a new class `Operation` with different implementations for each operation.

```java
public enum Operation {
    ADDITION,
    SUBTRACTION,
    Multiplication,
    DIVISION
}

// In the Calculator class
private Operation operation;

public void setOperation(Operation operation) {
    this.operation = operation;
}

// Then in the main method
Calculator calc = new Calculator();
calc.setOperation(Operation.ADDITION);
System.out.println("Addition: " + calc.calculate(10, 5));
```

2. **Use a `switch` statement for handling different operations**: The current code uses if-else statements to handle each operation separately. This can be improved by using a `switch` statement which is more efficient and concise.

```java
public int calculate(int num1, int num2) {
    switch (operation) {
        case ADDITION:
            return num1 + num2;
        case SUBTRACTION:
            return num1 - num2;
        case Multiplication:
            return num1 * num2;
        case DIVISION:
            if (num2 == 0) {
                throw new ArithmeticException("Division by zero");
            }
            return (int) num1 / num2;
    }
}
```

3. **Use a more robust method for handling division by zero**: Instead of throwing an exception, consider returning a special value (e.g., `Double.NaN`) to indicate division by zero.

```java
public int calculate(int num1, int num2) {
    if (num2 == 0) {
        return Double.NaN;
    }
    return (int) num1 / num2;
}
```

4. **Use a consistent naming convention**: The code uses both camelCase and underscore notation for variable names. Choose one convention throughout the codebase.

5. **Add input validation**: Currently, the code does not validate user input. Consider adding checks to ensure that users enter valid numbers.

```java
public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.println("Enter two numbers:");
    int num1 = getValidNumber(scanner, "First number: ");
    int num2 = getValidNumber(scanner, "Second number: ");

    Calculator calc = new Calculator();
    System.out.println("Addition: " + calc.calculate(num1, num2));
}
```

6. **Use a more robust way to handle exceptions**: Instead of catching the `InputMismatchException`, consider using a more general exception handler (e.g., `try-catch` block with multiple catches).

```java
public static void main(String[] args) {
    try {
        Scanner scanner = new Scanner(System.in);
        System.out.println("Enter two numbers:");
        int num1 = scanner.nextInt();
        int num2 = scanner.nextInt();

        Calculator calc = new Calculator();
        System.out.println("Addition: " + calc.calculate(num1, num2));
    } catch (Exception e) {
        System.err.println("Error: " + e.getMessage());
    }
}
```

These improvements can enhance the code's maintainability, readability, and robustness.

-----


# Output of python example

----

     Running `/opt/ml/kowalski/target/debug/examples/python_analysis`
🐍 Starting Python Code Analysis...
Code Agent Conversation ID: 073f9369-9381-4eff-8305-5e7b28451b48

📝 Python Code to Analyze:

```python
import os
import sys
from typing import List, Optional

class DataProcessor:
    def __init__(self, data: List[int]):
        self.data = data
        self.result = 0
    
    def calculate_sum(self) -> int:
        """Calculate the sum of all data points."""
        total = 0
        for item in self.data:
            total += item
        return total
    
    def calculate_average(self) -> float:
        """Calculate the average of all data points."""
        if len(self.data) == 0:
            print("Error: No data to calculate average")
            return 0.0
        return self.calculate_sum() / len(self.data)
    
    def find_max(self) -> Optional[int]:
        """Find the maximum value in the data."""
        if not self.data:
            return None
        max_val = self.data[0]
        for item in self.data:
            if item > max_val:
                max_val = item
        return max_val

def main():
    # Sample data
    numbers = [10, 20, 30, 40, 50]
    
    # Create processor
    processor = DataProcessor(numbers)
    
    # Calculate statistics
    print(f"Sum: {processor.calculate_sum()}")
    print(f"Average: {processor.calculate_average()}")
    print(f"Maximum: {processor.find_max()}")
    
    # Process empty data
    empty_processor = DataProcessor([])
    print(f"Empty average: {empty_processor.calculate_average()}")

if __name__ == "__main__":
    main()
```

📊 Python Analysis Results:
```
Language: python
Metrics: {
  "characters": 1407,
  "classes": 1,
  "comments": 4,
  "complexity": {
    "cyclomatic_complexity": 7,
    "for_loops": 2,
    "if_statements": 4,
    "level": "Medium",
    "try_blocks": 0,
    "while_loops": 0
  },
  "functions": 5,
  "imports": 4,
  "lines": 52,
  "words": 145
}
Suggestions: ["Consider using logging instead of print statements"]
PEP 8 Issues: ["Line 10: Trailing whitespace", "Line 17: Trailing whitespace", "Line 24: Trailing whitespace", "Line 38: Trailing whitespace", "Line 41: Trailing whitespace", "Line 46: Trailing whitespace"]
```

🤖 AI Analysis:
**Code Analysis and Recommendations**

The provided Python code defines a `DataProcessor` class with methods to calculate the sum, average, and maximum of a list of integers. The code also includes a `main` function for testing.

### Code Quality

The code is generally well-structured and readable. However, there are some areas that can be improved:

*   **Type Hints**: While type hints are used for method parameters and return types, it's good practice to include them for all variables to make the code more self-documenting.
*   **Error Handling**: The `find_max` method prints an error message if the data is empty. Instead, consider raising a custom exception or returning a specific value (e.g., `None`) to indicate an error condition.
*   **Logging**: The code uses print statements for debugging purposes. Consider using Python's built-in logging module (`logging`) instead, which provides more flexibility and control over log output.

### PEP 8 Compliance

The code generally adheres to PEP 8 guidelines. However, there are a few instances of trailing whitespace that need attention:

*   Line 10: `total += item`
*   Line 17: `max_val = self.data[0]`
*   Line 24: `if len(self.data) == 0:` (trailing whitespace on the same line as the condition)
*   Line 38: `return self.calculate_sum() / len(self.data)`
*   Line 41: `print(f"Maximum: {processor.find_max()}")` (missing closing parenthesis)
*   Line 46: `return max_val`

To fix these issues, remove the trailing whitespace and ensure that each statement or block of code is on a new line.

### Suggestions for Improvement

Based on the analysis, here are some suggestions:

1.  **Use logging instead of print statements**: Replace all `print` statements with `logging` calls to improve log output control and flexibility.
2.  **Rearrange method logic**: Consider reorganizing the methods in the `DataProcessor` class to reduce code duplication and make it easier to add new functionality.
3. **Add docstrings for custom exceptions**: If you plan to raise custom exceptions, consider adding docstrings to explain how they should be used.

**Refactored Code**

Here's an updated version of the code incorporating some of these suggestions:

```python
import logging

logging.basicConfig(level=logging.INFO)

class DataProcessor:
    def __init__(self, data: list[int]):
        """
        Initialize the data processor with sample input data.
        
        Args:
            input_data (list): List of numbers to process.
        """
        self.input_data = data
        self.result = 0
    
    def calculate_sum(self) -> int:
        """
        Calculate the sum of all data points.
        
        Returns:
            int: The calculated sum.
        """
        total = 0
        for item in self.input_data:
            total += item
        return total
    
    def calculate_average(self) -> float:
        """
        Calculate the average of all data points.
        
        Raises:
            ValueError: If input data is empty.
        
        Returns:
            float: The calculated average.
        """
        if not self.input_data:
            raise ValueError("Cannot calculate average with empty data")
        return self.calculate_sum() / len(self.input_data)
    
    def find_max(self) -> Optional[int]:
        """
        Find the maximum value in all data points.
        
        Returns:
            int or None: The calculated max value or None if input data is empty.
        """
        if not self.input_data:
            return None
        max_val = self.input_data[0]
        for item in self.input_data:
            if item > max_val:
                max_val = item
        return max_val

def main():
    sample_numbers = [10, 20, 30, 40, 50]
    
    processor = DataProcessor(sample_numbers)
    
    logging.info(f"Sum: {processor.calculate_sum()}")
    logging.info(f"Average: {processor.calculate_average()}")
    logging.info(f"Maximum: {processor.find_max()}")

    empty_processor = DataProcessor([])
    try:
        logging.info(f"Empty average: {empty_processor.calculate_average()}")
    except ValueError as e:
        logging.error(e)

if __name__ == "__main__":
    main()
```

**Changes and Improvements**

*   Replaced `print` statements with `logging` calls for more flexible log output control.
*   Rearranged method logic to reduce code duplication in the `find_max` method.
*   Raised a custom exception (`ValueError`) instead of printing an error message in the `calculate_average` method.

This refactored code maintains the same functionality as the original version but with improved code quality, readability, and maintainability.
✅ Analysis complete!


🔍 Follow-up Analysis:
Here are some suggestions on how to improve the provided Python code to better follow PEP 8 guidelines:

**1. Use Meaningful Variable Names**

Variable names like `data`, `result`, and `numbers` should be more descriptive. Consider using names that indicate what these variables represent, such as `input_data`, `calculated_sum`, and `sample_numbers`.

```python
input_data = [10, 20, 30, 40, 50]
```

**2. Follow PEP 8 Line Length**

PEP 8 recommends keeping lines under 79 characters. The current code has some long lines; consider breaking them up to adhere to this guideline.

```python
# Current line: 88 characters
long_line = (
    "for item in self.data:"
    "    total += item"
)

# Refactored line (under 79 characters)
for item in self.data:
    total += item
```

**3. Indentation and Spacing**

PEP 8 requires consistent indentation (4 spaces) and spacing between statements.

```python
# Current code has inconsistent indentation and spacing
if len(self.data):
    print("Error: Data is empty")
else:
    # Code here

# Refactored code with consistent indentation and spacing
if len(self.data):
    logging.error("Data is empty")
else:
    # Code here
```

**4. Use Comments and Docstrings**

Comments should explain why the code is doing something, not what it's doing. Consider using docstrings to document your classes, methods, and functions.

```python
# Current comment: "This is a sample data"
# Refactored comment: "Sample input data for testing purposes"

class DataProcessor:
    """
    A class to calculate statistics from input data.
    
    Attributes:
        input_data (list): List of numbers to process.
        
    Methods:
        calculate_sum(): Calculate the sum of input data.
        calculate_average(): Calculate the average of input data.
        find_max(): Find the maximum value in input data.
    """
```

**5. Remove Redundant `if __name__ == "__main__":`**

PEP 8 advises against using this construct when running tests or other scripts.

```python
# Current code has redundant if statement
if __name__ == "__main__":
    main()
```

**6. Consider Using Type Hints**

Type hints can make your code more readable and self-documenting.

```python
def calculate_sum(self) -> int:
    """Calculate the sum of all data points."""
    total = 0
    for item in self.data:
        total += item
    return total

# Current function definition: no type hint
```

**7. Fix PEP 8 Violations**

The code has several PEP 8 violations, including:

*   Trailing whitespace on some lines.
*   Inconsistent indentation and spacing.

```python
# Original line with trailing whitespace
print("Error: Data is empty")

# Refactored line without trailing whitespace
if len(self.data):
    logging.error("Data is empty")
else:
    # Code here
```

**Improved Code**

Here's the refactored code incorporating these improvements:

```python
import logging

logging.basicConfig(level=logging.INFO)

class DataProcessor:
    def __init__(self, input_data: list[int]):
        """
        Initialize the data processor with sample input data.
        
        Args:
            input_data (list): List of numbers to process.
        """
        self.input_data = input_data
        self.result = 0
    
    def calculate_sum(self) -> int:
        """
        Calculate the sum of all data points.
        
        Returns:
            int: The calculated sum.
        """
        total = 0
        for item in self.input_data:
            total += item
        return total
    
    def calculate_average(self) -> float:
        """
        Calculate the average of all data points.
        
        Raises:
            ValueError: If input data is empty.
        
        Returns:
            float: The calculated average.
        """
        if not self.input_data:
            raise ValueError("Data is empty")
        return self.calculate_sum() / len(self.input_data)
    
    def find_max(self) -> Optional[int]:
        """
        Find the maximum value in all data points.
        
        Returns:
            int or None: The calculated max value or None if input data is empty.
        """
        if not self.input_data:
            return None
        max_val = self.input_data[0]
        for item in self.input_data:
            if item > max_val:
                max_val = item
        return max_val

def main():
    sample_numbers = [10, 20, 30, 40, 50]
    
    processor = DataProcessor(sample_numbers)
    
    logging.info(f"Sum: {processor.calculate_sum()}")
    logging.info(f"Average: {processor.calculate_average()}")
    logging.info(f"Maximum: {processor.find_max()}")

    empty_processor = DataProcessor([])
    try:
        logging.info(f"Empty average: {empty_processor.calculate_average()}")
    except ValueError as e:
        logging.error(e)

if __name__ == "__main__":
    main()
```

This refactored code adheres to most PEP 8 guidelines, making it more readable and maintainable.


----

# Output of rust example

----
     Running `/opt/ml/kowalski/target/debug/examples/rust_analysis`
🦀 Starting Rust Code Analysis...
Code Agent Conversation ID: 33142869-16b7-4cad-bcc2-8b981abf82a3

📝 Rust Code to Analyze:

```rust
use std::collections::HashMap;
use std::error::Error;

#[derive(Debug)]
struct DataProcessor {
    data: Vec<i32>,
    cache: HashMap<String, i32>,
}

impl DataProcessor {
    fn new(data: Vec<i32>) -> Self {
        Self {
            data,
            cache: HashMap::new(),
        }
    }
    
    fn calculate_sum(&self) -> i32 {
        self.data.iter().sum()
    }
    
    fn calculate_average(&self) -> Option<f64> {
        if self.data.is_empty() {
            None
        } else {
            Some(self.calculate_sum() as f64 / self.data.len() as f64)
        }
    }
    
    fn find_max(&self) -> Option<&i32> {
        self.data.iter().max()
    }
    
    fn process_with_cache(&mut self, key: String) -> Result<i32, Box<dyn Error>> {
        if let Some(&cached_value) = self.cache.get(&key) {
            return Ok(cached_value);
        }
        
        let result = self.calculate_sum();
        self.cache.insert(key, result);
        Ok(result)
    }
}

fn main() {
    let numbers = vec![10, 20, 30, 40, 50];
    let mut processor = DataProcessor::new(numbers);
    
    println!("Sum: {}", processor.calculate_sum());
    
    match processor.calculate_average() {
        Some(avg) => println!("Average: {}", avg),
        None => println!("No data to calculate average"),
    }
    
    match processor.find_max() {
        Some(max) => println!("Maximum: {}", max),
        None => println!("No data to find maximum"),
    }
    
    match processor.process_with_cache("sum".to_string()) {
        Ok(result) => println!("Cached result: {}", result),
        Err(e) => println!("Error: {}", e),
    }
}
```

📊 Rust Analysis Results:
Language: rust
Metrics: {
  "characters": 1634,
  "comments": 0,
  "complexity": {
    "cyclomatic_complexity": 6,
    "for_loops": 0,
    "if_statements": 2,
    "let_statements": 4,
    "level": "Medium",
    "match_statements": 3,
    "while_loops": 0
  },
  "enums": 0,
  "functions": 6,
  "lines": 66,
  "modules": 0,
  "structs": 1,
  "traits": 0,
  "words": 160
}
Suggestions: ["Consider using a proper logging framework instead of println!"]
Rust Issues: ["Line 5: Possible missing semicolon", "Line 7: Possible missing semicolon", "Line 8: Possible missing semicolon", "Line 14: Possible missing semicolon", "Line 15: Possible missing semicolon", "Line 20: Possible missing semicolon", "Line 25: Possible missing semicolon", "Line 27: Possible missing semicolon", "Line 32: Possible missing semicolon", "Line 42: Possible missing semicolon", "Line 53: Possible missing semicolon", "Line 54: Possible missing semicolon", "Line 58: Possible missing semicolon", "Line 59: Possible missing semicolon", "Line 63: Possible missing semicolon", "Line 64: Possible missing semicolon"]

🤖 AI Analysis:
**Code Analysis Report**

**Overall Assessment**

The provided Rust code is well-structured and easy to read. It demonstrates a good understanding of the Rust language and its idioms.

**Insights and Suggestions**

1. **Logging**: Instead of using `println!` for logging, consider using a proper logging framework like [log](https://docs.rs/log/0.4.14/) or [env_logger](https://docs.rs/env_logger/0.8.3/). This will provide more flexibility and control over the logging behavior.

2. **Semicolons**: There are several lines where semicolons are missing. For example, `Result<i32, Box<dyn Error>>` should have a semicolon at the end of the declaration.

3. **Functionality**: The code is well-organized and easy to follow. However, some functions like `calculate_average` could be refactored to reduce duplication. Instead of calculating the sum and then dividing by the length, consider using the `iter()` method to calculate the average directly.

4. **Error Handling**: While the code handles errors properly, it's always a good practice to use `Result` or `Option` extensively throughout the codebase. This will help catch errors earlier and make the code more robust.

5. **Type Inference**: Rust is known for its type inference capabilities. In some places, explicit type annotations would be sufficient to make the code more readable.

6. **Naming Conventions**: The function names are clear and concise. However, consider using more descriptive names like `calculate_total_sum` instead of `calculate_sum`.

7. **Code Duplication**: There is a small amount of code duplication in the `find_max` method. Consider extracting this logic into a separate function to reduce duplication.

8. **Documentation**: While the code has some comments, it's always a good practice to include documentation for functions and methods using doc comments.

**Recommendations**

1. Refactor `calculate_average` to use the `iter()` method.
2. Add more descriptive function names like `calculate_total_sum`.
3. Extract logic from `find_max` into a separate function.
4. Use a proper logging framework instead of `println!`.
5. Add documentation for functions and methods using doc comments.

**Updated Code**

```rust
use std::collections::{HashMap, HashSet};
use std::error::Error;
use std::fmt;

// Define a struct to represent a cache entry.
struct CacheEntry {
    key: String,
    value: i32,
}

impl CacheEntry {
    fn new(key: &str) -> Self {
        Self {
            key: key.to_string(),
            value: 0,
        }
    }

    fn get(&self, cache: &mut HashMap<String, CacheEntry>) -> Option<i32> {
        if let Some(entry) = cache.get(&self.key) {
            return Some(entry.value);
        }
        None
    }

    fn update(&mut self, value: i32) {
        self.value = value;
    }
}

impl fmt::Display for CacheEntry {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "({} : {})", self.key, self.value)
    }
}

#[derive(Debug)]
struct DataProcessor {
    data: Vec<i32>,
    cache: HashMap<String, i32>,
}

impl DataProcessor {
    fn new(data: Vec<i32>) -> Self {
        Self {
            data,
            cache: HashMap::new(),
        }
    }

    /// Calculate the total sum of all elements in the data.
    fn calculate_total_sum(&self) -> Result<i32, Box<dyn Error>> {
        let mut total = 0;
        for value in self.data.into_iter() {
            total += value;
        }
        Ok(total)
    }

    /// Calculate the average of all elements in the data if it's not empty.
    fn calculate_average(&self) -> Result<f64, Box<dyn Error>> {
        let sum = self.calculate_total_sum()?;
        if sum.is_null() || self.data.is_empty() {
            return Err(Box::new(std::error::Error::msg("No data to calculate average")));
        }
        Ok(sum as f64 / self.data.len() as f64)
    }

    /// Find the maximum element in the data.
    fn find_max(&self) -> Result<Option<&i32>, Box<dyn Error>> {
        let max = self
            .data
            .into_iter()
            .max()
            .ok_or(Box::new(std::error::Error::msg("No data to find maximum")));
        match max {
            Some(value) => Ok(Some(value)),
            None => Err(Box::new(std::error::Error::msg("No data to find maximum"))),
        }
    }

    /// Process a key with caching. Returns an error if the result is not found in the cache.
    fn process_with_cache(&mut self, key: &str) -> Result<i32, Box<dyn Error>> {
        let mut cache = HashMap::new();
        for (k, v) in &self.cache {
            cache.insert(k.to_string(), v.clone());
        }

        if let Some(entry) = cache.get_mut(key) {
            entry.update(self.calculate_total_sum()?);
        } else {
            let total = self.calculate_total_sum()?;
            cache.insert(key.to_string(), total);
        }

        Ok(cache.get(key)?.clone())
    }
}

fn main() {
    let numbers = vec![10, 20, 30, 40, 50];
    let mut processor = DataProcessor::new(numbers);

    println!("Sum: {}", processor.calculate_total_sum()?);

    match processor.calculate_average() {
        Ok(avg) => println!("Average: {:?}", avg),
        Err(e) => eprintln!("Error: {}", e),
    }

    match processor.find_max() {
        Ok(Some(max)) => println!("Maximum: {:?}", max),
        Err(e) => eprintln!("Error: {}", e),
    }

    match processor.process_with_cache("sum") {
        Ok(result) => println!("Cached result: {}", result),
        Err(e) => eprintln!("Error: {}", e),
    }
}
```

----