
The Khronos XML API Registry

Jon Leech

Last updated 2013/09/17

Abstract

This document describes the Khronos XML API Registry schema, and pro-
vides some additional information about using the registry and scripts to generate
C header files. The underlying XML files and scripts can be obtained starting on
the OpenGL.org registry pages at URL

http://www.opengl.org/registry/

Contents
1 Introduction 3

2 Downloading the Registry 4

3 Getting Started 4
3.1 Header Generation Script - genheaders.py 5
3.2 Registry Processing Script - reg.py 5

4 XML Registry Schema 5
4.1 Profiles . 5
4.2 API Names . 6

5 Registry Root (<registry> tag) 6
5.1 Attributes of <registry> tags . 6
5.2 Contents of <registry> tags . 6

6 API types (<types> tag) 6
6.1 Attributes of <type> tags . 7
6.2 Contents of <type> tags . 7
6.3 Example of a <types> tag . 7

7 Enumerant Groups (<groups> tag) 7
7.1 Attributes of <groups> tags . 7
7.2 Contents of <groups> tags . 7
7.3 Example of <groups> tags . 8

1

http://www.opengl.org/registry/

8 Enumerant Group (<group> tag) 8
8.1 Attributes of <group> tags . 8
8.2 Contents of <group> tags . 8
8.3 Meaning of <group> tags . 8

9 Enumerant Blocks (<enums> tag) 8
9.1 Attributes of <enums> tags . 9
9.2 Contents of <enums> tags . 9
9.3 Example of <enums> tags . 9

10 Enumerants (<enum> tag) 9
10.1 Attributes of <enum> tags . 10
10.2 Contents of <enum> tags . 10

11 Unused Enumerants (<unused> tag) 10
11.1 Attributes of <unused> tags . 10
11.2 Contents of <unused> tags . 10

12 Command Blocks (<commands> tag) 11
12.1 Attributes of <commands> tags . 11
12.2 Contents of <commands> tags . 11

13 Commands (<command> tag) 11
13.1 Attributes of <command> tags . 11
13.2 Contents of <command> tags . 11
13.3 Command prototype (<proto> tags) 12

13.3.1 Attributes of <proto> tags 12
13.3.2 Contents of <proto> tags 12

13.4 Command parameter (<param> tags) 12
13.4.1 Attributes of <param> tags 12
13.4.2 Contents of <param> tags 13

13.5 Example of a <commands> tag . 13

14 API Features / Versions (<feature> tag) 13
14.1 Attributes of <feature> tags . 13
14.2 Contents of <feature> tags . 14
14.3 Example of a <feature> tag . 14

15 Extension Blocks (<extensions> tag) 14
15.1 Attributes of <extensions> tags 15
15.2 Contents of <extensions> tags 15

16 API Extensions (<extension> tag) 15
16.1 Attributes of <extension> tags 15
16.2 Contents of <extension> tags . 15
16.3 Example of an <extensions> tag 15

2

17 Required and Removed Interfaces (<require> and <remove> tags) 16
17.1 Attributes of <require> and <remove> tags 16
17.2 Contents of <require> and <remove> tags 17

18 General Discussion 17
18.1 Stability of the XML Database and Schema 17
18.2 Feature Enhancements to the Registry 17
18.3 Type Annotations and Relationship to .spec Files 18

18.3.1 Simple API Type Aliases . 18
18.3.2 Numeric Constraints . 18
18.3.3 GL Object Names . 19
18.3.4 Groups Not Defined Yet . 19
18.3.5 Other Groups . 19
18.3.6 Validating Groups . 19

19 Change Log 19

1 Introduction
The Registry is the successor to the ancient .spec files used for many years to describe
the GL, WGL, and GLX APIs. The .spec files had a number of issues including:

• Almost completely undocumented

• Used ancient Perl scripts to read and process the registry.

• Hard to extend and did not semantically capture a variety of things we would
like to know about an API.

• Attempted to represent data types using a syntax that bore no description to any
actual programming language. Generating this syntax from OpenGL extensions,
which describe C bindings, was error-prone and painful for the registry main-
tainer.

• Could not easily represent related APIs such as OpenGL ES.

• There was an annoying inconsistency about presence of function/token prefixes
and vendor suffixes depending on which of the GL, WGL, and GLX .spec files
was being used.

The new registry uses an XML representation of the API and a set of Python 3
scripts to manipulate the XML, based on the lxml Python bindings. It comes with
an XML schema and validator, is somewhat better documented, and we will be much
more responsive about updating it.

Some groups outside Khronos have their own XML based API descriptions, often
used for additional purposes such as library code generators or extension loaders, and
it may be desirable to construct XSLT or other translators between the schema.

3

2 Downloading the Registry
You can get the processed C header files from the registry pages on the OpenGL.org
webserver at URL

http://www.opengl.org/registry/

However, to modify the XML database or the generator scripts for other purposes,
you’ll need to install a Subversion client and download the registry subrepository at

https://cvs.khronos.org/svn/repos/ogl/trunk/doc/registry/public/api/

3 Getting Started
Once the registry has been obtained from Subversion, if you’re running in a Linux
command-line environment and have Python 3, the lxml Python bindings, and libxml
installed, you should just be able to invoke make and generate C/C++ header files for
all the following targets:

• GL/glext.h - OpenGL 1.2 (and later) compatibility profile API + extensions

• GL/glcorearb.h - OpenGL core profile API + extensions

• GLES/gl.h - OpenGL compatibility profile API

• GLES/glext.h - OpenGL ES 1.x extensions

• GLES2/gl2.h - OpenGL ES 2.x API

• GLES2/gl2ext.h - OpenGL ES 2.x extensions

• GLES3/gl3.h - OpenGL ES 3.x API

• GL/glx.h - GLX API

• GL/glxext.h - GLX 1.3 (and later) API + extensions

• GL/wgl.h - WGL API

• GL/wglext.h - WGL extensions

• EGL/egl.h - EGL (still being worked on)

Starting with the Makefile rules and inspecting the files gl.xml, genheaders.py,
and reg.py will be necessary if you want to repurpose the registry for reasons other
than header file generation, or to generate headers for languages other than C.

If you’re running in a Windows, MaxOS X, or other environment, there are equiv-
alent versions of Python and GNU Make, although we haven’t tested this ourselves.
Feedback would be helpful.

4

http://www.opengl.org/registry/
https://cvs.khronos.org/svn/repos/ogl/trunk/doc/registry/public/api/

3.1 Header Generation Script - genheaders.py
When generating header files using the genheaders.py script, an API name and
profile name are required, as shown in the Makefile examples. Additionally, specific
versions and extensions can be required or excluded. Based on this information, the
generator script extracts the relevant interfaces and creates a C-language header file for
them. genheaders.py contains predefined generator options for OpenGL, OpenGL
core profile, OpenGL ES 1 / 2 / 3, GLX, and WGL headers.

The generator script is intended to be generalizable to other languages by writing
new generator classes. Such generators would have to rewrite the C types and defini-
tions in the XML to something appropriate to their language.

3.2 Registry Processing Script - reg.py
Actual XML registry processing is done in reg.py, which contains several objects
and methods for loading registries and extracting interfaces and extensions for use in
header generation. There is some internal documentation in the form of comments
although nothing more extensive exists yet, and it’s possible the Python scripts will
evolve significantly based on public feedback.

4 XML Registry Schema
The format of an XML registry is a top level <registry> tag containing <types>,
<enums>, <commands>, <feature>, and <extension> tags describing the dif-
ferent elements of an API, as explained below. This description corresponds to a formal
Relax NG schema file, registry.rnc, against which the XML registry files can be
validated.

At present there are separate registries for:

• OpenGL and OpenGL ES - gl.xml

• GLX - glx.xml

• WGL - wgl.xml

• EGL - egl.xml (still in development)

4.1 Profiles
Types and enumerants can have different definitions depending on the API profile re-
quested, which allows us to accomodate minor incompatibilities in the OpenGL and
OpenGL ES APIs, for example. Features and extensions can include some elements
conditionally depending on the API profile requested.

5

4.2 API Names
Several tags use a api attribute. This is an arbitrary string, specified at header gen-
eration time, for labelling properties of a specific API. The string can be, but is not
necessarily, an actual API name. As used in genheaders.py and gl.xml, the API
names are gl, gles1, and gles2, corresponding to OpenGL, OpenGL ES 1, and
OpenGL ES 2/3, respectively.

5 Registry Root (<registry> tag)
A <registry> contains the entire definition of one or more related APIs.

5.1 Attributes of <registry> tags
None.

5.2 Contents of <registry> tags
Zero or more of each of the following tags, normally in this order (although order
shouldn’t be important):

• <comment> - Contains arbitrary text, such as a copyright statement. Unused.

• <types> (see section 6) - defines API types. Usually only one tag is used.

• <groups> (see section 7) - defines named groups of tokens for possible param-
eter validation in API bindings for languages other than C. Usually only one tag
is used.

• <enums> (see section 9) - defines API enumerants (tokens). Usually multiple
tags are used.

• <commands> (see section 12) - defines API commands (functions). Usually
only one tag is used.

• <feature> (see section 14) - defines API feature interfaces (API versions,
more or less). One tag per feature set.

• <extensions> (see section 15) - defines API extension interfaces. Usually
only one tag is used, wrapping many extensions.

6 API types (<types> tag)
The <types> tag contains individual <type> tags describing each of the derived
types used in the API.

Each <type> tag contains legal C code, with attributes or embedded tags denoting
the type name.

6

6.1 Attributes of <type> tags
• requires - another type name this type requires to complete its definition.

• name - name of this type (if not defined in the tag body).

• api - an API name (see <feature> below) which specializes this definition
of the named type, so that the same API types may have different definitions for
e.g. GL ES and GL.

• comment - arbitrary string (unused).

6.2 Contents of <type> tags
<type> contains text which is legal C code for a type declaration. It may also contain
embedded tags:

• <apientry/> - insert a platform calling convention macro here during header
generation, used mostly for function pointer types.

• <name> - contains the name of this type (if not defined in the tag attributes).

6.3 Example of a <types> tag
<types>

<type name="stddef"><![CDATA[#include <stddef.h>]]></type>
<type requires="stddef">typedef ptrdiff_t <name>GLintptr</name>;</type>

</types>

If the GLint64 type is required by a command, this will result in the following
declarations:

#include <stddef.h>
typedef ptrdiff_t GLintptr;

7 Enumerant Groups (<groups> tag)
The <groups> tags contain individual <group> tags describing some of the group
annotations used for return and parameter types.

7.1 Attributes of <groups> tags
None.

7.2 Contents of <groups> tags
Each <groups> block contains zero or more <group> tags, in arbitrary order (al-
though they are typically ordered by group name, to improve human readability).

7

7.3 Example of <groups> tags
<groups>

<group name="AccumOp">
<enum name="GL_ACCUM"/>

</group>

<group name="AttribMask">
<enum name="GL_ACCUM_BUFFER_BIT"/>
<enum name="GL_ALL_ATTRIB_BITS"/>

</group>
</groups>

8 Enumerant Group (<group> tag)
Each <group> tag defines a single group annotation.

8.1 Attributes of <group> tags
• name - group name, an arbitrary string for grouping a set of enums together

within a broader namespace.

8.2 Contents of <group> tags
<group> tags may contain zero or more <enum> tags. Each <enum> tag may con-
tain only a name attribute, which should correspond to a <enum> definition in an
<enums> block.

8.3 Meaning of <group> tags
If a <proto> or <param> tag of a <command> has a group attribute defined,
and that attribute matches a <group> name, then the return type or parameter type is
considered to be constrained to values defined by the corresponding <group>. C lan-
guage bindings do not attempt to enforce this constraint in any way, but other language
bindings may try to do so.

9 Enumerant Blocks (<enums> tag)
The <enums> tags contain individual <enum> tags describing each of the token (enu-
merant) names used in the API.

8

9.1 Attributes of <enums> tags
• namespace - a string for grouping many different enums together, currently

unused but typically something like GL for all enums in the OpenGL / OpenGL
ES shared namespace. Multiple <enums> tags can share the same namespace.

• type - a string describing the data type of the values of this group of enums,
currently unused. The only string used at present in the is bitmask.

• start, end - integers defining the start and end of a reserved range of enumer-
ants for a particular vendor or purpose. start must be ≤ end. These fields
define formal enumerant allocations within a namespace, and are made by the
Khronos Registrar on request from implementers following the enum allocation
policy.

• vendor - string describing the vendor or purposes to whom a reserved range of
enumerants is allocated.

• comment - arbitrary string (unused)

9.2 Contents of <enums> tags
Each <enums> block contains zero or more <enum> and <unused> tags, in ar-
bitrary order (although they are typically ordered by sorting on enumerant values, to
improve human readability).

9.3 Example of <enums> tags
<enums namespace="AttribMask" type="bitmask">

<enum value="0x00000001" name="GL_CURRENT_BIT" />
<enum value="0x00000002" name="GL_POINT_BIT" />

</enums>
<enums namespace="GL" start="0x80E0" end="0x810F" vendor="MS">

<enum value="0x80E0" name="GL_BGR" />
<unused start="0x80E1" end="0x810F" />
</enums>

When processed into a C header, and assuming all these tokens were required, this
results in

#define GL_CURRENT_BIT 0x00000001
#define GL_POINT_BIT 0x00000001
#define GL_BGR 0x80E0

10 Enumerants (<enum> tag)
Each <enum> tag defines a single GL (or other API) token.

9

10.1 Attributes of <enum> tags
• value - enumerant value, a legal C constant (usually a hexadecimal integer).

• name - enumerant name, a legal C preprocessor token name.

• api - an API name which specializes this definition of the named enum, so that
different APIs may have different values for the same token (used to address a
few accidental incompatibilities between GL and GL ES).

• type - legal C suffix for the value to force it to a specific type. Currently only
u and ull are used, for unsigned 32- and 64-bit integer values, respectively.
Separated from the value field since this eases parsing and sorting of values,
and is rarely used.

• alias - name of another enumerant this is an alias of, used where token names
have been changed as a result of profile changes or for consistency purposes.
An enumerant alias is simply a different name for the exact same value. At
present, enumerants which are promoted from extension to core API status are
not tagged as aliases - just enumerants tagged as aliases in the Changed Tokens
sections of appendices to the OpenGL Specification. This might change in the
future.

10.2 Contents of <enum> tags
<enum> tags have no allowed contents. All information is contained in the attributes.

11 Unused Enumerants (<unused> tag)
Each <unused> tag defines a range of enumerants which is allocated, but not yet
assigned to specific enums. This just tracks the unused values and is not needed for
header generation.

11.1 Attributes of <unused> tags
• start, end - integers defining the start and end of an unused range of enumer-

ants. start must be ≤ end. This range should not exceed the range reserved
by the surrounding <enums> tag.

• comment - arbitrary string (unused)

11.2 Contents of <unused> tags
None.

10

12 Command Blocks (<commands> tag)
The <commands> tag contains definitions of each of the functions (commands) used
in the API.

12.1 Attributes of <commands> tags
• namespace - a string defining the namespace in which commands live, cur-

rently unused but typically something like GL.

12.2 Contents of <commands> tags
Each <commands> block contains zero or more <command> tags, in arbitrary order
(although they are typically ordered by sorting on the command name, to improve
human readability).

13 Commands (<command> tag)
The <command> tag contains a structured definition of a single API command (func-
tion).

13.1 Attributes of <command> tags
• comment - arbitrary string (unused).

13.2 Contents of <command> tags
• <proto> must be the first element, and is a tag defining the C function proto-

type of a command as described below, up to the function name but not including
function parameters.

• <param> elements for each command parameter follow, defining its name and
type, as described below. If a command takes no arguments, it has no <param>
tags.

Following these elements, the remaining elements in a <command> tag are op-
tional and may be in any order:

• <alias> has no attributes and contains a string which is the name of another
command this command is an alias of, used when promoting a function from
extension to ARB or ARB to API status. A command alias describes the case
where there are two function names which resolve to the same client library
code, so (for example) the case where a command is promoted but is also given
different GLX protocol would not be an alias in this sense.

11

• <vecequiv> has no attributes and contains a string which is the name of an-
other command which is the vector equivalent of this command. For example,
the vector equivalent of glVertex3f is glVertex3fv.

• <glx> defines GLX protocol information for this command, as described below.
Many GL commands don’t have GLX protocol defined, and other APIs such as
EGL and WGL don’t use GLX at all.

13.3 Command prototype (<proto> tags)
The <proto> tag defines the return type and name of a command.

13.3.1 Attributes of <proto> tags

• group - group name, an arbitrary string.

If the group name is defined, it may be interpreted as described in section 8.3.

13.3.2 Contents of <proto> tags

The text elements of a <proto> tag, with all other tags removed, is legal C code
describing the return type and name of a command. In addition it may contain two
semantic tags:

• The <ptype> tag is optional, and contains text which is a valid type name found
in <type> tag, and indicates that this type must be previously defined for the
definition of the command to succeed. Builtin C types, and any derived types
which are expected to be found in other header files, should not be wrapped in
<ptype> tags.

• The <name> tag is required, and contains the command name being described.

13.4 Command parameter (<param> tags)
The <param> tag defines the type and name of a parameter.

13.4.1 Attributes of <param> tags

• group - group name, an arbitrary string.

• len - parameter length, either an integer specifying the number of elements of
the parameter <ptype>, or a complex string expression with poorly defined
syntax, usually representing a length that is computed as a combination of other
command parameter values, and possibly current GL state as well.

If the group name is defined, it may be interpreted as described in section 8.3.

12

13.4.2 Contents of <param> tags

The text elements of a <param> tag, with all other tags removed, is legal C code
describing the type and name of a function parameter. In addition it may contain two
semantic tags:

• The <ptype> tag is optional, and contains text which is a valid type name found
in <type> tag, and indicates that this type must be previously defined for the
definition of the command to succeed. Builtin C types, and any derived types
which are expected to be found in other header files, should not be wrapped in
<ptype> tags.

• The <name> tag is required, and contains the command name being described.

13.5 Example of a <commands> tag
<commands>

<command>
<proto>void <name>glBeginConditionalRenderNV</name></proto>
<param><ptype>GLuint</ptype> <name>id</name></param>
<param><ptype>GLenum</ptype> <name>mode</name></param>
<alias name="glBeginConditionalRender" />
<glx type="render" opcode="348" />

</command>
</commands>

When processed into a C header, this results in

void glBeginConditionalRenderNV(GLuint id, GLenum mode);

14 API Features / Versions (<feature> tag)
API features are described in individual <feature> tags. A feature is the set of
interfaces (enumerants and commands) defined by a particular API and version, such
as OpenGL 4.0 or OpenGL ES 3.0, and includes all API profiles of that version.

14.1 Attributes of <feature> tags
• api - API name this feature is for (see section 4.2), such as gl or gles2.

• name - version name, used as the C preprocessor token under which the version’s
interfaces are protected against multiple inclusion. Example: GL_VERSION_-
4_2.

• protect - an additional preprocessor token used to protect a feature definition.
Usually another feature or extension name. Rarely used, for odd circumstances
where the definition of a feature or extension requires another to be defined first.

13

• number - feature version number, usually a string interpreted as majorNumber.minorNumber.
Example: 4.2.

• comment - arbitrary string (unused)

14.2 Contents of <feature> tags
Zero or more <require> and <remove> tags (see section 17), in arbitrary order.
Each tag describes a set of interfaces that is respectively required for, or removed from,
this feature, as described below.

14.3 Example of a <feature> tag
<feature api="gl" name="GL_VERSION_3_0" number="3.0">

<require>
<enum name="GL_COMPARE_REF_TO_TEXTURE" />
<enum name="GL_CLIP_DISTANCE0" />
<command name="glEndTransformFeedback" />

</require>
<require profile="compatibility">

<enum name="GL_INDEX" />
</require>

</feature>

When processed into a C header for the compatibility profile of OpenGL, this
results in (assuming the usual definitions of these GL interfaces):

#ifndef GL_VERSION_3_0
#define GL_VERSION_3_0 1
#define GL_COMPARE_REF_TO_TEXTURE 0x884E
#define GL_CLIP_DISTANCE0 0x3000
#define GL_INDEX 0x8222
typedef void (APIENTRYP PFNGLENDTRANSFORMFEEDBACKPROC) (void);
#ifdef GL_GLEXT_PROTOTYPES
GLAPI void APIENTRY glEndTransformFeedback (void);
#endif
#endif /* GL_VERSION_3_0 */

If processed into a header for the core profile, the definition of GL_INDEX would
not appear.

15 Extension Blocks (<extensions> tag)
The <extensions> tag contains definitions of each of the extenions which are de-
fined for the API.

14

15.1 Attributes of <extensions> tags
None.

15.2 Contents of <extensions> tags
Each <extensions> block contains zero or more <extension> tags, each de-
scribing an API extension, in arbitrary order (although they are typically ordered by
sorting on the extension name, to improve human readability).

16 API Extensions (<extension> tag)
API extensions are described in individual <extension> tags. An extension is the
set of interfaces defined by a particular API extension specification, such as ARB_-
multitexture. <extension> is similar to <feature>, but instead of hav-
ing version and profile attributes, instead has a supported attribute, which
describes the set of API names which the extension can potentially be implemented
against.

16.1 Attributes of <extension> tags
• supported - a regular expression, with an implicit ˆ and $ bracketing it, which

should match the api tag of a set of <feature> tags.

• protect - an additional preprocessor token used to protect an extension def-
inition. Usually another feature or extension name. Rarely used, for odd cir-
cumstances where the definition of an extension requires another to be defined
first.

• comment - arbitrary string (unused)

16.2 Contents of <extension> tags
Zero or more <require> and <remove> tags (see section 17), in arbitrary order.
Each tag describes a set of interfaces that is respectively required for, or removed from,
this extension, as described below.

16.3 Example of an <extensions> tag
<extensions>

<extension name="GL_ARB_robustness" supported="gl|glcore" >
<require>

<enum name="GL_NO_ERROR" />
<command name="glGetGraphicsResetStatusARB" />

</require>
<require api="gl" profile="compatibility">

15

<command name="glGetnMapdvARB" />
</require>

</extension>
</extensions>

The supported attribute says that the extension can be supported for either the
GL compatibility (gl) or GL core (glcore) API profiles, but not for other APIs.
When processed into a C header for the core profile of OpenGL, this results in (as-
suming the usual definitions of these GL interfaces):

#ifndef GL_ARB_robustness
#define GL_ARB_robustness 1
#define GL_NO_ERROR 0
typedef GLenum (APIENTRYP PFNGLGETGRAPHICSRESETSTATUSARBPROC) (void);
#ifdef GL_GLEXT_PROTOTYPES
GLAPI GLenum APIENTRY glGetGraphicsResetStatusARB (void);
#endif
#endif /* GL_ARB_robustness */

17 Required and Removed Interfaces (<require> and
<remove> tags)

A <require> block defines a set of interfaces (types, enumerants and commands)
required by a <feature> or <extension>. A <remove> block defines a set of
interfaces removed by a <feature> (this is primarily useful for the OpenGL core
profile, which removed many interfaces - extensions should never remove interfaces,
although this usage is allowed by the schema). Except for the tag name and behavior,
the contents of <require> and <remove> tags are identical.

17.1 Attributes of <require> and <remove> tags
• profile - string name of an API profile. Interfaces in the tag are only re-

quired (or removed) if the specified profile is being generated. If not specified,
interfaces are required (or removed) for all API profiles.

• comment - arbitrary string (unused)

• api - an API name (see section 4.2). Interfaces in the tag are only required (or
removed) if the specified API is being generated. If not specified, interfaces are
required (or removed) for all APIs.

The api attribute is only supported inside <extension> tags, since <feature>
tags already define a specific API.

16

17.2 Contents of <require> and <remove> tags
Zero or more of the following tags, in any order:

• <command> specifies an required (or removed) command defined in a <commands>
block. The tag has no content, but contains elements:

– name - name of the command (required).

– comment - arbitrary string (optional and unused).

• <enum> specifies an required (or removed) enumerant defined in a <enums>
block. The tag has no content, but contains elements:

– name - name of the enumerant (required).

– comment - arbitrary string (optional and unused).

• <type> specifies a required (or removed) type defined in a <types> block.
Most types are picked up implicitly by using the <ptype> tags of commands,
but in a few cases, additional types need to be specified explicitly (it is un-
likely that a type would ever be removed, although this usage is allowed by the
schema). The tag has no content, but contains elements:

– name - name of the type (required).

– comment - arbitrary string (optional and unused).

18 General Discussion

18.1 Stability of the XML Database and Schema
The new registry schema, scripts, and databases are evolving in response to feedback
and to Khronos’ own wishlist. This means the XML schema is subject to change,
although most such change will probably be confined to adding attributes to existing
tags. The XML databases such as gl.xml will evolve in response to schema changes,
to new extensions and API versions, and to general cleanup, such as canonicalization
of the XML or sorting of <command> and <extension> tags by name. Changes
to the schema will be described in the change log of this document (see section 19).
Changes to the .xml files will be described in Subversion revision history.

18.2 Feature Enhancements to the Registry
There are lots of tools and additional tags that would make the XML format more ex-
pressive and the tools more capable. Khronos is open to hosting additional processing
scripts for other purposes. We’re hoping to be much more responsive to bugs filed in the
Khronos public bugzilla now that there’s a more modern and maintainable framework
to build on.

A partial wishlist follows:

17

• Enhance <command> <alias> tags to describe more relaxed sorts of aliases,
such as commands equivalent in behavior and interface, but using different GLX
protocol (this might be called a client-side alias or something of the sort).

18.3 Type Annotations and Relationship to .spec Files
The initial releases of the XML Registry did not include type annotation and array
length information from the old .spec files, which generated a number of complaints
from people writing bindings of OpenGL to languages other than C. The majority of
these annotations have now been added to the XML, in the form of <group> tags
(see section 8) defining groups of related enumerants, group attributes on <proto>
and <param> tags specifying that the corresponding return type belongs to a group,
and len attributes on <param> tags specifying the array length of the corresponding
parameter.

There are many caveats regarding these annotations. For the most part they date
from SGI’s OpenGL 1.1 implementation, and have not been updated. The defined
<group>s therefore do not cover many API parameters which could be given a group,
and in many cases, the defined <group>s have not been updated to add new enumer-
ants from later versions of OpenGL and OpenGL extensions. The group names are
often somewhat misleading (with imbedded vendor extension tags, while the corre-
sponding features have been promoted).

The <group>s added to gl.xml are the enumerant groups defined in enum.spec,
and enumext.spec. Many additional group names were used in the annotations in
gl.spec, and they fall in several categories discussed below.

18.3.1 Simple API Type Aliases

Group names that were simply an alias for a GL type have been left entirely out of
gl.xml, since they offer no useful additional information.

For example, a parameter described as UInt32 in gl.spec is not annotated with
group="UInt32" in gl.xml, because this offers no information about the param-
eter not already present in its declaration as <ptype>GLuint</ptype>.

A few examples of such groups are cl_context, handleARB, Int32, and
sync.

18.3.2 Numeric Constraints

Group names representing some type of numerical constraint on a value are retained in
<proto> and <param> group attributes, but no definition exists. This is because
the existing <group> mechanism can only describe constraints to specific enumerant
names.

This is not a regression relative to the .spec files, which also did not describe the
meaning of these groups.

A few examples of such groups are CheckedFloat32, ClampedFixed, and
CoordD.

18

18.3.3 GL Object Names

Group names representing an object name obtained from e.g. a glGen* command,
such as a display list name, are retained in in <proto> and <param> group at-
tributes, but no definition exists. This is because the existing <group> mechanism
can only describe constraints to specific enumerant names.

This is not a regression relative to the .spec files, which also did not describe the
meaning of these groups.

A few examples of such groups are List and Path.

18.3.4 Groups Not Defined Yet

Group names representing enumerant groups which were not defined in enum.spec
and enumext.spec are retained in <proto> and <param> group attributes, but
no definition exists. Such groups usually are a result of vendors contributing gl.spec
entries for an extension without contributing corresponding enum.spec entries.

This is not a regression relative to the .spec files, which also did not describe the
meaning of these groups.

A few examples of such groups are ArrayObjectPNameATI, BinormalPointerTypeEXT,
and SpriteParameterNameSGIX.

18.3.5 Other Groups

There are probably a few groups which are present in gl.xml but should not be. These
can be gradually cleaned up over time.

18.3.6 Validating Groups

The genheaders.py script has been enhanced to allow validating groups during
header generation. Invoking it with the -validate option, for example via:

$ genheaders.py -validate -registry gl.xml
will generate a text dump on standard output showing all parameter type group at-
tributes which do not have corresponding <group> tags.

19 Change Log
• 2013/09/17 - Add <comment> attribute to <command> tags within <commands>.

• 2013/06/24 - Add <groups> and <group> tags, renamed <enums> attribute
class to group, and add parameter type annotation attributes group and
len to both <proto> and <param>. Add section 18.3 discussing limitations
of these annotations. Still need to add examples of the annotation attributes.

• 2013/06/19 - Added <extensions> tag block as a wrapper around groups of
<extension> tags, to ease XML transformations such as sorting extensions
by name.

19

• 2013/06/14 - Expanded description of tags, better formatting

• 2013/06/12 - First release, text file format

20

Index
¡alias¿, 11, 18
¡apientry/¿, 7
¡command¿, 8, 11, 17–19
¡commands¿, 5, 6, 11, 13, 17, 19
¡comment¿, 6, 19
¡enum¿, 8–10, 17
¡enums¿, 5, 6, 8–10, 17, 19
¡extension¿, 5, 15–17, 19
¡extensions¿, 6, 14, 15, 19
¡feature¿, 5–7, 13–16
¡glx¿, 12
¡group¿, 7, 8, 18, 19
¡groups¿, 6–8, 19
¡name¿, 7, 12, 13
¡param¿, 8, 11–13, 18, 19
¡proto¿, 8, 11, 12, 18, 19
¡ptype¿, 12, 13, 17
¡registry¿, 5, 6
¡remove¿, 14–17
¡require¿, 14–17
¡type¿, 6, 7, 12, 13, 17
¡types¿, 5–7, 17
¡unused¿, 9, 10
¡vecequiv¿, 12

alias, 10
api, 6, 7, 10, 13, 15, 16

class, 19
comment, 7, 9–11, 14–17

end, 9, 10

group, 8, 12, 18, 19

len, 12, 18, 19

name, 7, 8, 10, 13, 15, 17
namespace, 9, 11
number, 14

profile, 15, 16
protect, 13, 15

requires, 7

start, 9, 10
supported, 15, 16

type, 9, 10

value, 10
vendor, 9
version, 15

21

	1 Introduction
	2 Downloading the Registry
	3 Getting Started
	3.1 Header Generation Script - genheaders.py
	3.2 Registry Processing Script - reg.py

	4 XML Registry Schema
	4.1 Profiles
	4.2 API Names

	5 Registry Root (<registry> tag)
	5.1 Attributes of <registry> tags
	5.2 Contents of <registry> tags

	6 API types (<types> tag)
	6.1 Attributes of <type> tags
	6.2 Contents of <type> tags
	6.3 Example of a <types> tag

	7 Enumerant Groups (<groups> tag)
	7.1 Attributes of <groups> tags
	7.2 Contents of <groups> tags
	7.3 Example of <groups> tags

	8 Enumerant Group (<group> tag)
	8.1 Attributes of <group> tags
	8.2 Contents of <group> tags
	8.3 Meaning of <group> tags

	9 Enumerant Blocks (<enums> tag)
	9.1 Attributes of <enums> tags
	9.2 Contents of <enums> tags
	9.3 Example of <enums> tags

	10 Enumerants (<enum> tag)
	10.1 Attributes of <enum> tags
	10.2 Contents of <enum> tags

	11 Unused Enumerants (<unused> tag)
	11.1 Attributes of <unused> tags
	11.2 Contents of <unused> tags

	12 Command Blocks (<commands> tag)
	12.1 Attributes of <commands> tags
	12.2 Contents of <commands> tags

	13 Commands (<command> tag)
	13.1 Attributes of <command> tags
	13.2 Contents of <command> tags
	13.3 Command prototype (<proto> tags)
	13.3.1 Attributes of <proto> tags
	13.3.2 Contents of <proto> tags

	13.4 Command parameter (<param> tags)
	13.4.1 Attributes of <param> tags
	13.4.2 Contents of <param> tags

	13.5 Example of a <commands> tag

	14 API Features / Versions (<feature> tag)
	14.1 Attributes of <feature> tags
	14.2 Contents of <feature> tags
	14.3 Example of a <feature> tag

	15 Extension Blocks (<extensions> tag)
	15.1 Attributes of <extensions> tags
	15.2 Contents of <extensions> tags

	16 API Extensions (<extension> tag)
	16.1 Attributes of <extension> tags
	16.2 Contents of <extension> tags
	16.3 Example of an <extensions> tag

	17 Required and Removed Interfaces (<require> and <remove> tags)
	17.1 Attributes of <require> and <remove> tags
	17.2 Contents of <require> and <remove> tags

	18 General Discussion
	18.1 Stability of the XML Database and Schema
	18.2 Feature Enhancements to the Registry
	18.3 Type Annotations and Relationship to .spec Files
	18.3.1 Simple API Type Aliases
	18.3.2 Numeric Constraints
	18.3.3 GL Object Names
	18.3.4 Groups Not Defined Yet
	18.3.5 Other Groups
	18.3.6 Validating Groups

	19 Change Log

