1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
//! Affine points

use super::{FieldElement, ProjectivePoint, CURVE_EQUATION_B};
use crate::{CompressedPoint, EncodedPoint, FieldBytes, Scalar, Secp256k1};
use core::ops::{Mul, Neg};
use elliptic_curve::{
    generic_array::arr,
    group::{prime::PrimeCurveAffine, GroupEncoding},
    sec1::{self, FromEncodedPoint, ToEncodedPoint},
    subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption},
    weierstrass::DecompressPoint,
    AffineArithmetic,
};

#[cfg(feature = "zeroize")]
use elliptic_curve::zeroize::Zeroize;

impl AffineArithmetic for Secp256k1 {
    type AffinePoint = AffinePoint;
}

/// A point on the secp256k1 curve in affine coordinates.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(docsrs, doc(cfg(feature = "arithmetic")))]
pub struct AffinePoint {
    pub(crate) x: FieldElement,
    pub(crate) y: FieldElement,
    pub(super) infinity: Choice,
}

impl PrimeCurveAffine for AffinePoint {
    type Scalar = Scalar;
    type Curve = ProjectivePoint;

    /// Returns the identity of the group: the point at infinity.
    fn identity() -> Self {
        Self {
            x: FieldElement::zero(),
            y: FieldElement::zero(),
            infinity: Choice::from(1),
        }
    }

    /// Returns the base point of SECP256k1.
    fn generator() -> Self {
        // SECP256k1 basepoint in affine coordinates:
        // x = 79be667e f9dcbbac 55a06295 ce870b07 029bfcdb 2dce28d9 59f2815b 16f81798
        // y = 483ada77 26a3c465 5da4fbfc 0e1108a8 fd17b448 a6855419 9c47d08f fb10d4b8
        AffinePoint {
            x: FieldElement::from_bytes(&arr![u8;
                0x79, 0xbe, 0x66, 0x7e, 0xf9, 0xdc, 0xbb, 0xac, 0x55, 0xa0, 0x62, 0x95, 0xce, 0x87,
                0x0b, 0x07, 0x02, 0x9b, 0xfc, 0xdb, 0x2d, 0xce, 0x28, 0xd9, 0x59, 0xf2, 0x81, 0x5b,
                0x16, 0xf8, 0x17, 0x98
            ])
            .unwrap(),
            y: FieldElement::from_bytes(&arr![u8;
                0x48, 0x3a, 0xda, 0x77, 0x26, 0xa3, 0xc4, 0x65, 0x5d, 0xa4, 0xfb, 0xfc, 0x0e, 0x11,
                0x08, 0xa8, 0xfd, 0x17, 0xb4, 0x48, 0xa6, 0x85, 0x54, 0x19, 0x9c, 0x47, 0xd0, 0x8f,
                0xfb, 0x10, 0xd4, 0xb8
            ])
            .unwrap(),
            infinity: Choice::from(0),
        }
    }

    /// Is this point the identity point?
    fn is_identity(&self) -> Choice {
        self.infinity
    }

    /// Convert to curve representation.
    fn to_curve(&self) -> ProjectivePoint {
        ProjectivePoint::from(*self)
    }
}

impl ConditionallySelectable for AffinePoint {
    fn conditional_select(a: &AffinePoint, b: &AffinePoint, choice: Choice) -> AffinePoint {
        AffinePoint {
            x: FieldElement::conditional_select(&a.x, &b.x, choice),
            y: FieldElement::conditional_select(&a.y, &b.y, choice),
            infinity: Choice::conditional_select(&a.infinity, &b.infinity, choice),
        }
    }
}

impl ConstantTimeEq for AffinePoint {
    fn ct_eq(&self, other: &AffinePoint) -> Choice {
        (self.x.negate(1) + &other.x).normalizes_to_zero()
            & (self.y.negate(1) + &other.y).normalizes_to_zero()
            & self.infinity.ct_eq(&other.infinity)
    }
}

impl Default for AffinePoint {
    fn default() -> Self {
        Self::identity()
    }
}

impl PartialEq for AffinePoint {
    fn eq(&self, other: &AffinePoint) -> bool {
        self.ct_eq(other).into()
    }
}

impl Eq for AffinePoint {}

impl AffinePoint {
    /// Decode this point from a SEC1-encoded point.
    pub(crate) fn decode(encoded_point: &EncodedPoint) -> CtOption<Self> {
        match encoded_point.coordinates() {
            sec1::Coordinates::Identity => CtOption::new(Self::identity(), 1.into()),
            sec1::Coordinates::Compact { .. } => {
                // TODO(tarcieri): add decompaction support
                CtOption::new(Self::default(), 0.into())
            }
            sec1::Coordinates::Compressed { x, y_is_odd } => {
                AffinePoint::decompress(x, Choice::from(y_is_odd as u8))
            }
            sec1::Coordinates::Uncompressed { x, y } => {
                let x = FieldElement::from_bytes(x);
                let y = FieldElement::from_bytes(y);

                x.and_then(|x| {
                    y.and_then(|y| {
                        // Check that the point is on the curve
                        let lhs = (y * &y).negate(1);
                        let rhs = x * &x * &x + &CURVE_EQUATION_B;
                        let point = AffinePoint {
                            x,
                            y,
                            infinity: Choice::from(0),
                        };
                        CtOption::new(point, (lhs + &rhs).normalizes_to_zero())
                    })
                })
            }
        }
    }
}

impl DecompressPoint<Secp256k1> for AffinePoint {
    fn decompress(x_bytes: &FieldBytes, y_is_odd: Choice) -> CtOption<Self> {
        FieldElement::from_bytes(x_bytes).and_then(|x| {
            let alpha = (x * &x * &x) + &CURVE_EQUATION_B;
            let beta = alpha.sqrt();

            beta.map(|beta| {
                let y = FieldElement::conditional_select(
                    &beta.negate(1),
                    &beta,
                    beta.normalize().is_odd().ct_eq(&y_is_odd),
                );

                Self {
                    x,
                    y: y.normalize(),
                    infinity: Choice::from(0),
                }
            })
        })
    }
}

impl GroupEncoding for AffinePoint {
    type Repr = CompressedPoint;

    fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
        let tag = bytes[0];
        let y_is_odd = tag.ct_eq(&sec1::Tag::CompressedOddY.into());
        let is_compressed_point = y_is_odd | tag.ct_eq(&sec1::Tag::CompressedEvenY.into());
        Self::decompress(FieldBytes::from_slice(&bytes[1..]), y_is_odd)
            .and_then(|point| CtOption::new(point, is_compressed_point))
    }

    fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
        // No unchecked conversion possible for compressed points
        Self::from_bytes(bytes)
    }

    fn to_bytes(&self) -> Self::Repr {
        CompressedPoint::clone_from_slice(self.to_encoded_point(true).as_bytes())
    }
}

impl FromEncodedPoint<Secp256k1> for AffinePoint {
    /// Attempts to parse the given [`EncodedPoint`] as an SEC1-encoded [`AffinePoint`].
    ///
    /// # Returns
    ///
    /// `None` value if `encoded_point` is not on the secp256k1 curve.
    fn from_encoded_point(encoded_point: &EncodedPoint) -> Option<Self> {
        Self::decode(encoded_point).into()
    }
}

impl ToEncodedPoint<Secp256k1> for AffinePoint {
    fn to_encoded_point(&self, compress: bool) -> EncodedPoint {
        EncodedPoint::conditional_select(
            &EncodedPoint::from_affine_coordinates(
                &self.x.to_bytes(),
                &self.y.to_bytes(),
                compress,
            ),
            &EncodedPoint::identity(),
            self.infinity,
        )
    }
}

impl From<AffinePoint> for EncodedPoint {
    /// Returns the SEC1 compressed encoding of this point.
    fn from(affine_point: AffinePoint) -> EncodedPoint {
        affine_point.to_encoded_point(true)
    }
}

impl Mul<Scalar> for AffinePoint {
    type Output = ProjectivePoint;

    fn mul(self, scalar: Scalar) -> ProjectivePoint {
        ProjectivePoint::from(self) * scalar
    }
}

impl Mul<&Scalar> for AffinePoint {
    type Output = ProjectivePoint;

    fn mul(self, scalar: &Scalar) -> ProjectivePoint {
        ProjectivePoint::from(self) * scalar
    }
}

impl Neg for AffinePoint {
    type Output = AffinePoint;

    fn neg(self) -> Self::Output {
        AffinePoint {
            x: self.x,
            y: self.y.negate(1).normalize_weak(),
            infinity: self.infinity,
        }
    }
}

#[cfg(feature = "zeroize")]
impl Zeroize for AffinePoint {
    fn zeroize(&mut self) {
        self.x.zeroize();
        self.y.zeroize();
    }
}

#[cfg(test)]
mod tests {
    use super::AffinePoint;
    use crate::EncodedPoint;
    use elliptic_curve::{
        group::prime::PrimeCurveAffine,
        sec1::{FromEncodedPoint, ToEncodedPoint},
    };
    use hex_literal::hex;

    const UNCOMPRESSED_BASEPOINT: &[u8] = &hex!(
        "0479BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
         483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8"
    );
    const COMPRESSED_BASEPOINT: &[u8] =
        &hex!("0279BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798");

    #[test]
    fn uncompressed_round_trip() {
        let pubkey = EncodedPoint::from_bytes(UNCOMPRESSED_BASEPOINT).unwrap();
        let res: EncodedPoint = AffinePoint::from_encoded_point(&pubkey)
            .unwrap()
            .to_encoded_point(false);

        assert_eq!(res, pubkey);
    }

    #[test]
    fn compressed_round_trip() {
        let pubkey = EncodedPoint::from_bytes(COMPRESSED_BASEPOINT).unwrap();
        let res: EncodedPoint = AffinePoint::from_encoded_point(&pubkey)
            .unwrap()
            .to_encoded_point(true);

        assert_eq!(res, pubkey);
    }

    #[test]
    fn uncompressed_to_compressed() {
        let encoded = EncodedPoint::from_bytes(UNCOMPRESSED_BASEPOINT).unwrap();

        let res = AffinePoint::from_encoded_point(&encoded)
            .unwrap()
            .to_encoded_point(true);

        assert_eq!(res.as_bytes(), COMPRESSED_BASEPOINT);
    }

    #[test]
    fn compressed_to_uncompressed() {
        let encoded = EncodedPoint::from_bytes(COMPRESSED_BASEPOINT).unwrap();

        let res = AffinePoint::from_encoded_point(&encoded)
            .unwrap()
            .to_encoded_point(false);

        assert_eq!(res.as_bytes(), UNCOMPRESSED_BASEPOINT);
    }

    #[test]
    fn decompress() {
        let encoded = EncodedPoint::from_bytes(COMPRESSED_BASEPOINT).unwrap();
        let decompressed = encoded.decompress().unwrap();
        assert_eq!(decompressed.as_bytes(), UNCOMPRESSED_BASEPOINT);
    }

    #[test]
    fn affine_negation() {
        let basepoint = AffinePoint::generator();
        assert_eq!((-(-basepoint)), basepoint);
    }
}