logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
//! ECDSA verification support.

use super::{recoverable, Error, Signature};
use crate::{
    AffinePoint, CompressedPoint, EncodedPoint, FieldBytes, ProjectivePoint, PublicKey, Scalar,
    Secp256k1,
};
use ecdsa_core::{hazmat::VerifyPrimitive, signature};
use elliptic_curve::{
    bigint::U256,
    consts::U32,
    ops::{Invert, LinearCombination, Reduce},
    sec1::ToEncodedPoint,
    IsHigh,
};
use signature::digest::{Digest, FixedOutput};
use signature::DigestVerifier;

#[cfg(feature = "sha256")]
use signature::PrehashSignature;

#[cfg(feature = "pkcs8")]
use crate::pkcs8::{self, DecodePublicKey};

#[cfg(feature = "pem")]
use core::str::FromStr;

#[cfg(all(feature = "pem", feature = "serde"))]
#[cfg_attr(docsrs, doc(cfg(all(feature = "pem", feature = "serde"))))]
use serdect::serde::{de, ser, Deserialize, Serialize};

/// ECDSA/secp256k1 verification key (i.e. public key)
///
/// # `serde` support
///
/// When the `serde` feature of this crate is enabled, the `Serialize` and
/// `Deserialize` traits are impl'd for this type.
///
/// The serialization is binary-oriented and supports ASN.1 DER-encoded
/// X.509 Subject Public Key Info (SPKI) as the encoding format.
///
/// For a more text-friendly encoding of public keys, use
/// [`elliptic_curve::JwkEcKey`] instead.
#[cfg_attr(docsrs, doc(cfg(feature = "ecdsa")))]
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct VerifyingKey {
    /// Core ECDSA verify key
    pub(super) inner: ecdsa_core::VerifyingKey<Secp256k1>,
}

impl VerifyingKey {
    /// Initialize [`VerifyingKey`] from a SEC1-encoded public key.
    pub fn from_sec1_bytes(bytes: &[u8]) -> Result<Self, Error> {
        ecdsa_core::VerifyingKey::from_sec1_bytes(bytes).map(|key| VerifyingKey { inner: key })
    }

    /// Initialize [`VerifyingKey`] from a SEC1 [`EncodedPoint`].
    // TODO(tarcieri): switch to using `FromEncodedPoint` trait?
    pub fn from_encoded_point(public_key: &EncodedPoint) -> Result<Self, Error> {
        ecdsa_core::VerifyingKey::from_encoded_point(public_key)
            .map(|key| VerifyingKey { inner: key })
    }

    /// Serialize this [`VerifyingKey`] as a SEC1-encoded bytestring
    /// (with point compression applied)
    pub fn to_bytes(&self) -> CompressedPoint {
        CompressedPoint::clone_from_slice(EncodedPoint::from(self).as_bytes())
    }
}

#[cfg(feature = "sha256")]
impl<S> signature::Verifier<S> for VerifyingKey
where
    S: PrehashSignature,
    Self: DigestVerifier<S::Digest, S>,
{
    fn verify(&self, msg: &[u8], signature: &S) -> Result<(), Error> {
        self.verify_digest(S::Digest::new_with_prefix(msg), signature)
    }
}

impl<D> DigestVerifier<D, Signature> for VerifyingKey
where
    D: Digest + FixedOutput<OutputSize = U32>,
{
    fn verify_digest(&self, digest: D, signature: &Signature) -> Result<(), Error> {
        self.inner.verify_digest(digest, signature)
    }
}

impl<D> DigestVerifier<D, recoverable::Signature> for VerifyingKey
where
    D: Digest + FixedOutput<OutputSize = U32>,
{
    fn verify_digest(&self, digest: D, signature: &recoverable::Signature) -> Result<(), Error> {
        self.inner
            .verify_digest(digest, &Signature::from(*signature))
    }
}

impl VerifyPrimitive<Secp256k1> for AffinePoint {
    fn verify_prehashed(&self, z: FieldBytes, signature: &Signature) -> Result<(), Error> {
        let r = signature.r();
        let s = signature.s();
        let z = <Scalar as Reduce<U256>>::from_be_bytes_reduced(z);

        // Ensure signature is "low S" normalized ala BIP 0062
        if s.is_high().into() {
            return Err(Error::new());
        }

        let s_inv = *s.invert();
        let u1 = z * s_inv;
        let u2 = *r * s_inv;

        let x = ProjectivePoint::lincomb(
            &ProjectivePoint::GENERATOR,
            &u1,
            &ProjectivePoint::from(self),
            &u2,
        )
        .to_affine()
        .x;

        if <Scalar as Reduce<U256>>::from_be_bytes_reduced(x.to_bytes()).eq(&r) {
            Ok(())
        } else {
            Err(Error::new())
        }
    }
}

impl From<PublicKey> for VerifyingKey {
    fn from(public_key: PublicKey) -> VerifyingKey {
        Self {
            inner: public_key.into(),
        }
    }
}

impl From<&PublicKey> for VerifyingKey {
    fn from(public_key: &PublicKey) -> VerifyingKey {
        VerifyingKey::from(*public_key)
    }
}

impl From<VerifyingKey> for PublicKey {
    fn from(verifying_key: VerifyingKey) -> PublicKey {
        verifying_key.inner.into()
    }
}

impl From<&VerifyingKey> for PublicKey {
    fn from(verifying_key: &VerifyingKey) -> PublicKey {
        verifying_key.inner.into()
    }
}

impl From<ecdsa_core::VerifyingKey<Secp256k1>> for VerifyingKey {
    fn from(verifying_key: ecdsa_core::VerifyingKey<Secp256k1>) -> VerifyingKey {
        VerifyingKey {
            inner: verifying_key,
        }
    }
}

impl From<&VerifyingKey> for EncodedPoint {
    fn from(verifying_key: &VerifyingKey) -> EncodedPoint {
        verifying_key.to_encoded_point(true)
    }
}

impl ToEncodedPoint<Secp256k1> for VerifyingKey {
    fn to_encoded_point(&self, compress: bool) -> EncodedPoint {
        self.inner.to_encoded_point(compress)
    }
}

impl TryFrom<AffinePoint> for VerifyingKey {
    type Error = Error;

    fn try_from(affine_point: AffinePoint) -> Result<VerifyingKey, Error> {
        let inner = PublicKey::try_from(affine_point)
            .map_err(|_| Error::new())?
            .into();

        Ok(VerifyingKey { inner })
    }
}

impl TryFrom<&AffinePoint> for VerifyingKey {
    type Error = Error;

    fn try_from(affine_point: &AffinePoint) -> Result<VerifyingKey, Error> {
        VerifyingKey::try_from(*affine_point)
    }
}

impl TryFrom<&EncodedPoint> for VerifyingKey {
    type Error = Error;

    fn try_from(encoded_point: &EncodedPoint) -> Result<Self, Error> {
        Self::from_encoded_point(encoded_point)
    }
}

impl From<VerifyingKey> for ProjectivePoint {
    fn from(verifying_key: VerifyingKey) -> ProjectivePoint {
        PublicKey::from(verifying_key.inner).into()
    }
}

impl From<&VerifyingKey> for ProjectivePoint {
    fn from(verifying_key: &VerifyingKey) -> ProjectivePoint {
        PublicKey::from(verifying_key.inner).into()
    }
}

impl TryFrom<ProjectivePoint> for VerifyingKey {
    type Error = Error;

    fn try_from(point: ProjectivePoint) -> Result<VerifyingKey, Error> {
        AffinePoint::from(point).try_into()
    }
}

impl TryFrom<&ProjectivePoint> for VerifyingKey {
    type Error = Error;

    fn try_from(point: &ProjectivePoint) -> Result<VerifyingKey, Error> {
        AffinePoint::from(point).try_into()
    }
}

#[cfg(feature = "pkcs8")]
#[cfg_attr(docsrs, doc(cfg(feature = "pkcs8")))]
impl TryFrom<pkcs8::SubjectPublicKeyInfo<'_>> for VerifyingKey {
    type Error = pkcs8::spki::Error;

    fn try_from(spki: pkcs8::SubjectPublicKeyInfo<'_>) -> pkcs8::spki::Result<Self> {
        PublicKey::try_from(spki).map(|pk| Self { inner: pk.into() })
    }
}

#[cfg(feature = "pkcs8")]
#[cfg_attr(docsrs, doc(cfg(feature = "pkcs8")))]
impl DecodePublicKey for VerifyingKey {}

#[cfg(feature = "pem")]
#[cfg_attr(docsrs, doc(cfg(feature = "pem")))]
impl FromStr for VerifyingKey {
    type Err = Error;

    fn from_str(s: &str) -> Result<Self, Error> {
        Self::from_public_key_pem(s).map_err(|_| Error::new())
    }
}

#[cfg(all(feature = "pem", feature = "serde"))]
#[cfg_attr(docsrs, doc(cfg(all(feature = "pem", feature = "serde"))))]
impl Serialize for VerifyingKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: ser::Serializer,
    {
        self.inner.serialize(serializer)
    }
}

#[cfg(all(feature = "pem", feature = "serde"))]
#[cfg_attr(docsrs, doc(cfg(all(feature = "pem", feature = "serde"))))]
impl<'de> Deserialize<'de> for VerifyingKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: de::Deserializer<'de>,
    {
        ecdsa_core::VerifyingKey::<Secp256k1>::deserialize(deserializer).map(Into::into)
    }
}

#[cfg(test)]
mod tests {
    use super::VerifyingKey;
    use crate::{test_vectors::ecdsa::ECDSA_TEST_VECTORS, Secp256k1};
    use ecdsa_core::signature::Verifier;
    use hex_literal::hex;

    ecdsa_core::new_verification_test!(Secp256k1, ECDSA_TEST_VECTORS);

    /// Wycheproof tcId: 304
    #[test]
    fn malleability_edge_case_valid() {
        let verifying_key_bytes = hex!("043a3150798c8af69d1e6e981f3a45402ba1d732f4be8330c5164f49e10ec555b4221bd842bc5e4d97eff37165f60e3998a424d72a450cf95ea477c78287d0343a");
        let verifying_key = VerifyingKey::from_sec1_bytes(&verifying_key_bytes).unwrap();

        let msg = hex!("313233343030");
        let sig = Signature::from_der(&hex!("304402207fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a002207fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0")).unwrap();
        assert!(sig.normalize_s().is_none()); // Ensure signature is already normalized
        assert!(verifying_key.verify(&msg, &sig).is_ok());
    }
}