1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/*
  Copyright 2017 Takashi Ogura

  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License.
*/
//! Joint related structs
use errors::*;
use na::{Isometry3, RealField, Translation3, Unit, UnitQuaternion, Vector3};
use std::cell::RefCell;
use std::fmt::{self, Display};

#[derive(Clone, Debug, Copy)]
pub struct Velocity<T: RealField> {
    pub translation: Vector3<T>,
    pub rotation: Vector3<T>,
}

impl<T> Velocity<T>
where
    T: RealField,
{
    pub fn new() -> Self {
        Self::zero()
    }
    pub fn from_parts(translation: Vector3<T>, rotation: Vector3<T>) -> Self {
        Self {
            translation,
            rotation,
        }
    }
    pub fn zero() -> Self {
        Self {
            translation: Vector3::zeros(),
            rotation: Vector3::zeros(),
        }
    }
}

impl<T> Default for Velocity<T>
where
    T: RealField,
{
    fn default() -> Self {
        Self::new()
    }
}

/// Type of Joint, `Fixed`, `Rotational`, `Linear` is supported now
#[derive(Copy, Debug, Clone)]
pub enum JointType<T: RealField> {
    /// Fixed joint. It has no `joint_position` and axis.
    Fixed,
    /// Rotational joint around axis. It has an position [rad].
    Rotational {
        /// axis of the joint
        axis: Unit<Vector3<T>>,
    },
    /// Linear joint. position is length
    Linear {
        /// axis of the joint
        axis: Unit<Vector3<T>>,
    },
}

fn axis_to_string<T: RealField>(axis: &Unit<Vector3<T>>) -> &str {
    if *axis == Vector3::x_axis() {
        "+X"
    } else if *axis == Vector3::y_axis() {
        "+Y"
    } else if *axis == Vector3::z_axis() {
        "+Z"
    } else if *axis == -Vector3::x_axis() {
        "-X"
    } else if *axis == -Vector3::y_axis() {
        "-Y"
    } else if *axis == -Vector3::z_axis() {
        "-Z"
    } else {
        ""
    }
}

impl<T: RealField> Display for JointType<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            JointType::Fixed => write!(f, "[⚓]"),
            JointType::Rotational { axis } => write!(f, "[⚙{}]", axis_to_string(axis)),
            JointType::Linear { axis } => write!(f, "[↕{}]", axis_to_string(axis)),
        }
    }
}

/// min/max range to check the joint position
#[derive(Copy, Debug, Clone)]
pub struct Range<T: RealField> {
    pub min: T,
    pub max: T,
}

impl<T> Range<T>
where
    T: RealField,
{
    /// Create new Range instance
    ///
    /// # Examples
    ///
    /// ```
    /// let range = k::joint::Range::new(-1.0, 1.0);
    /// ```
    pub fn new(min: T, max: T) -> Self {
        Range { min, max }
    }
    /// Check if the value is in the range
    ///
    /// `true` means it is OK.
    /// If the val is the same as the limit value (`min` or `max`), it returns true (valid).
    ///
    /// # Examples
    ///
    /// ```
    /// let range = k::joint::Range::new(-1.0, 1.0);
    /// assert!(range.is_valid(0.0));
    /// assert!(range.is_valid(1.0));
    /// assert!(!range.is_valid(1.5));
    /// ```
    pub fn is_valid(&self, val: T) -> bool {
        val <= self.max && val >= self.min
    }
}

impl<T> From<::std::ops::RangeInclusive<T>> for Range<T>
where
    T: RealField,
{
    /// # Examples
    ///
    /// ```
    /// let range : k::joint::Range<f64> = (-1.0..=1.0).into();
    /// assert!(range.is_valid(0.0));
    /// assert!(range.is_valid(1.0));
    /// assert!(!range.is_valid(1.5));
    /// ```
    fn from(range: ::std::ops::RangeInclusive<T>) -> Self {
        let (min, max) = range.into_inner();
        Range { min, max }
    }
}

/// Information for copying joint state of other joint
///
/// For example, `Mimic` is used to calculate the position of the gripper(R) from
/// gripper(L). In that case, the code like below will be used.
///
/// ```
/// let mimic_for_gripper_r = k::joint::Mimic::new(-1.0, 0.0);
/// ```
///
/// output position (mimic_position() is calculated by `joint positions = joint[name] * multiplier + origin`
///
#[derive(Debug, Clone)]
pub struct Mimic<T: RealField> {
    pub multiplier: T,
    pub origin: T,
}

impl<T> Mimic<T>
where
    T: RealField,
{
    /// Create new instance of Mimic
    ///
    /// # Examples
    ///
    /// ```
    /// let m = k::joint::Mimic::<f64>::new(1.0, 0.5);
    /// ```
    pub fn new(multiplier: T, origin: T) -> Self {
        Mimic { multiplier, origin }
    }
    /// Calculate the mimic joint position
    ///
    /// # Examples
    ///
    /// ```
    /// let m = k::joint::Mimic::<f64>::new(1.0, 0.5);
    /// assert_eq!(m.mimic_position(0.2), 0.7); // 0.2 * 1.0 + 0.5
    /// ```
    ///
    /// ```
    /// let m = k::joint::Mimic::<f64>::new(-2.0, -0.4);
    /// assert_eq!(m.mimic_position(0.2), -0.8); // 0.2 * -2.0 - 0.4
    /// ```
    pub fn mimic_position(&self, from_position: T) -> T {
        from_position * self.multiplier + self.origin
    }
}

/// Joint with type
#[derive(Debug, Clone)]
pub struct Joint<T: RealField> {
    /// Name of this joint
    pub name: String,
    /// Type of this joint
    pub joint_type: JointType<T>,
    /// position (angle) of this joint
    position: T,
    /// velocity of this joint
    velocity: T,
    /// Limits of this joint
    pub limits: Option<Range<T>>,
    /// local origin transform of joint
    origin: Isometry3<T>,
    /// cache of world transform
    world_transform_cache: RefCell<Option<Isometry3<T>>>,
    /// cache of world velocity
    world_velocity_cache: RefCell<Option<Velocity<T>>>,
}

impl<T> Joint<T>
where
    T: RealField,
{
    /// Create new Joint with name and type
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate nalgebra as na;
    /// extern crate k;
    ///
    /// // create fixed joint
    /// let fixed = k::Joint::<f32>::new("f0", k::JointType::Fixed);
    /// assert!(fixed.joint_position().is_none());
    ///
    /// // create rotational joint with Y-axis
    /// let rot = k::Joint::<f64>::new("r0", k::JointType::Rotational { axis: na::Vector3::y_axis() });
    /// assert_eq!(rot.joint_position().unwrap(), 0.0);
    /// ```
    ///
    pub fn new(name: &str, joint_type: JointType<T>) -> Joint<T> {
        Joint {
            name: name.to_string(),
            joint_type,
            position: T::zero(),
            velocity: T::zero(),
            limits: None,
            origin: Isometry3::identity(),
            world_transform_cache: RefCell::new(None),
            world_velocity_cache: RefCell::new(None),
        }
    }
    /// Set the position of the joint
    ///
    /// It returns Err if it is out of the limits, or this is fixed joint.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate nalgebra as na;
    /// extern crate k;
    ///
    /// // Create fixed joint
    /// let mut fixed = k::Joint::<f32>::new("f0", k::JointType::Fixed);
    /// // Set position to fixed joint always fails
    /// assert!(fixed.set_joint_position(1.0).is_err());
    ///
    /// // Create rotational joint with Y-axis
    /// let mut rot = k::Joint::<f64>::new("r0", k::JointType::Rotational { axis: na::Vector3::y_axis() });
    /// // As default, it has not limit
    ///
    /// // Initial position is 0.0
    /// assert_eq!(rot.joint_position().unwrap(), 0.0);
    /// // If it has no limits, set_joint_position always succeeds.
    /// rot.set_joint_position(0.2).unwrap();
    /// assert_eq!(rot.joint_position().unwrap(), 0.2);
    /// ```
    ///
    pub fn set_joint_position(&mut self, position: T) -> Result<(), JointError> {
        if let JointType::Fixed = self.joint_type {
            return Err(JointError::OutOfLimitError {
                joint_name: self.name.to_string(),
                message: "Joint is Fixed".to_owned(),
            });
        }
        if let Some(ref range) = self.limits {
            if !range.is_valid(position) {
                return Err(JointError::OutOfLimitError {
                    joint_name: self.name.to_string(),
                    message: format!(
                        "Joint is out of range: input={}, range={:?}",
                        position, range
                    ),
                });
            }
        }
        self.position = position;
        // TODO: have to reset descendent `world_transform_cache`
        self.world_transform_cache.replace(None);
        self.world_velocity_cache.replace(None);
        Ok(())
    }
    pub fn set_joint_position_unchecked(&mut self, position: T) {
        self.position = position;
        // TODO: have to reset descendent `world_transform_cache`
        self.world_transform_cache.replace(None);
        self.world_velocity_cache.replace(None);
    }
    /// Returns the position (angle)
    #[inline]
    pub fn joint_position(&self) -> Option<T> {
        match self.joint_type {
            JointType::Fixed => None,
            _ => Some(self.position),
        }
    }

    #[inline]
    pub fn origin(&self) -> &Isometry3<T> {
        &self.origin
    }

    #[inline]
    pub fn set_origin(&mut self, origin: Isometry3<T>) {
        self.origin = origin;
        self.world_transform_cache.replace(None);
    }

    pub fn set_joint_velocity(&mut self, velocity: T) -> Result<(), JointError> {
        if let JointType::Fixed = self.joint_type {
            return Err(JointError::OutOfLimitError {
                joint_name: self.name.to_string(),
                message: "Joint is Fixed".to_owned(),
            });
        }
        self.velocity = velocity;
        self.world_velocity_cache.replace(None);
        Ok(())
    }

    /// Returns the velocity
    #[inline]
    pub fn joint_velocity(&self) -> Option<T> {
        match self.joint_type {
            JointType::Fixed => None,
            _ => Some(self.velocity),
        }
    }

    /// Calculate and returns the transform of the end of this joint
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate nalgebra as na;
    /// extern crate k;
    ///
    /// // Create linear joint with X-axis
    /// let mut lin = k::Joint::<f64>::new("l0", k::JointType::Linear { axis: na::Vector3::x_axis() });
    /// assert_eq!(lin.local_transform().translation.vector.x, 0.0);
    /// lin.set_joint_position(-1.0).unwrap();
    /// assert_eq!(lin.local_transform().translation.vector.x, -1.0);
    /// ```
    ///
    pub fn local_transform(&self) -> Isometry3<T> {
        let joint_transform = match self.joint_type {
            JointType::Fixed => Isometry3::identity(),
            JointType::Rotational { axis } => Isometry3::from_parts(
                Translation3::new(T::zero(), T::zero(), T::zero()),
                UnitQuaternion::from_axis_angle(&axis, self.position),
            ),
            JointType::Linear { axis } => Isometry3::from_parts(
                Translation3::from(axis.into_inner() * self.position),
                UnitQuaternion::identity(),
            ),
        };
        self.origin * joint_transform
    }

    #[inline]
    pub(crate) fn set_world_transform(&self, world_transform: Isometry3<T>) {
        self.world_transform_cache.replace(Some(world_transform));
    }

    #[inline]
    pub(crate) fn set_world_velocity(&self, world_velocity: Velocity<T>) {
        self.world_velocity_cache.replace(Some(world_velocity));
    }
    /// Get the result of forward kinematics
    ///
    /// The value is updated by `Chain::update_transforms`
    #[inline]
    pub fn world_transform(&self) -> Option<Isometry3<T>> {
        *self.world_transform_cache.borrow()
    }

    #[inline]
    pub fn world_velocity(&self) -> Option<Velocity<T>> {
        *self.world_velocity_cache.borrow()
    }

    #[inline]
    pub fn is_movable(&self) -> bool {
        match self.joint_type {
            JointType::Fixed => false,
            _ => true,
        }
    }
}

impl<T: RealField> Display for Joint<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{} {}", self.name, self.joint_type)
    }
}