1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
use indexmap::IndexMap;

use juniper_codegen::GraphQLEnumInternal as GraphQLEnum;

use crate::ast::{Directive, FromInputValue, InputValue, Selection};
use crate::executor::Variables;
use crate::value::{DefaultScalarValue, Object, ScalarRefValue, ScalarValue, Value};

use crate::executor::{ExecutionResult, Executor, Registry};
use crate::parser::Spanning;
use crate::schema::meta::{Argument, MetaType};

/// GraphQL type kind
///
/// The GraphQL specification defines a number of type kinds - the meta type\
/// of a type.
#[derive(Clone, Eq, PartialEq, Debug, GraphQLEnum)]
#[graphql(name = "__TypeKind")]
pub enum TypeKind {
    /// ## Scalar types
    ///
    /// Scalar types appear as the leaf nodes of GraphQL queries. Strings,\
    /// numbers, and booleans are the built in types, and while it's possible\
    /// to define your own, it's relatively uncommon.
    Scalar,

    /// ## Object types
    ///
    /// The most common type to be implemented by users. Objects have fields\
    /// and can implement interfaces.
    Object,

    /// ## Interface types
    ///
    /// Interface types are used to represent overlapping fields between\
    /// multiple types, and can be queried for their concrete type.
    Interface,

    /// ## Union types
    ///
    /// Unions are similar to interfaces but can not contain any fields on\
    /// their own.
    Union,

    /// ## Enum types
    ///
    /// Like scalars, enum types appear as the leaf nodes of GraphQL queries.
    Enum,

    /// ## Input objects
    ///
    /// Represents complex values provided in queries _into_ the system.
    #[graphql(name = "INPUT_OBJECT")]
    InputObject,

    /// ## List types
    ///
    /// Represent lists of other types. This library provides implementations\
    /// for vectors and slices, but other Rust types can be extended to serve\
    /// as GraphQL lists.
    List,

    /// ## Non-null types
    ///
    /// In GraphQL, nullable types are the default. By putting a `!` after a\
    /// type, it becomes non-nullable.
    #[graphql(name = "NON_NULL")]
    NonNull,
}

/// Field argument container
#[derive(Debug)]
pub struct Arguments<'a, S = DefaultScalarValue> {
    args: Option<IndexMap<&'a str, InputValue<S>>>,
}

impl<'a, S> Arguments<'a, S>
where
    S: ScalarValue,
{
    #[doc(hidden)]
    pub fn new(
        mut args: Option<IndexMap<&'a str, InputValue<S>>>,
        meta_args: &'a Option<Vec<Argument<S>>>,
    ) -> Self {
        if meta_args.is_some() && args.is_none() {
            args = Some(IndexMap::new());
        }

        if let (&mut Some(ref mut args), &Some(ref meta_args)) = (&mut args, meta_args) {
            for arg in meta_args {
                if !args.contains_key(arg.name.as_str()) || args[arg.name.as_str()].is_null() {
                    if let Some(ref default_value) = arg.default_value {
                        args.insert(arg.name.as_str(), default_value.clone());
                    } else {
                        args.insert(arg.name.as_str(), InputValue::null());
                    }
                }
            }
        }

        Arguments { args }
    }

    /// Get and convert an argument into the desired type.
    ///
    /// If the argument is found, or a default argument has been provided,
    /// the `InputValue` will be converted into the type `T`.
    ///
    /// Returns `Some` if the argument is present _and_ type conversion
    /// succeeeds.
    pub fn get<T>(&self, key: &str) -> Option<T>
    where
        T: FromInputValue<S>,
        for<'b> &'b S: ScalarRefValue<'b>,
    {
        match self.args {
            Some(ref args) => match args.get(key) {
                Some(v) => v.convert(),
                None => None,
            },
            None => None,
        }
    }
}

/**
Primary trait used to expose Rust types in a GraphQL schema

All of the convenience macros ultimately expand into an implementation of
this trait for the given type. The macros remove duplicated definitions of
fields and arguments, and add type checks on all resolve functions
automatically. This can all be done manually.

`GraphQLType` provides _some_ convenience methods for you, in the form of
optional trait methods. The `name` and `meta` methods are mandatory, but
other than that, it depends on what type you're exposing:

* Scalars, enums, lists and non null wrappers only require `resolve`,
* Interfaces and objects require `resolve_field` _or_ `resolve` if you want
  to implement custom resolution logic (probably not),
* Interfaces and unions require `resolve_into_type` and `concrete_type_name`.
* Input objects do not require anything

## Example

Manually deriving an object is straightforward but tedious. This is the
equivalent of the `User` object as shown in the example in the documentation
root:

```rust
use juniper::{GraphQLType, Registry, FieldResult, Context,
              Arguments, Executor, ExecutionResult,
              DefaultScalarValue};
use juniper::meta::MetaType;
# use std::collections::HashMap;

#[derive(Debug)]
struct User { id: String, name: String, friend_ids: Vec<String>  }
#[derive(Debug)]
struct Database { users: HashMap<String, User> }

impl Context for Database {}

impl GraphQLType for User
{
    type Context = Database;
    type TypeInfo = ();

    fn name(_: &()) -> Option<&'static str> {
        Some("User")
    }

    fn meta<'r>(_: &(), registry: &mut Registry<'r>) -> MetaType<'r>
    where DefaultScalarValue: 'r,
    {
        // First, we need to define all fields and their types on this type.
        //
        // If we need arguments, want to implement interfaces, or want to add
        // documentation strings, we can do it here.
        let fields = &[
            registry.field::<&String>("id", &()),
            registry.field::<&String>("name", &()),
            registry.field::<Vec<&User>>("friends", &()),
        ];

        registry.build_object_type::<User>(&(), fields).into_meta()
    }

    fn resolve_field(
        &self,
        info: &(),
        field_name: &str,
        args: &Arguments,
        executor: &Executor<Database>
    )
        -> ExecutionResult
    {
        // Next, we need to match the queried field name. All arms of this
        // match statement return `ExecutionResult`, which makes it hard to
        // statically verify that the type you pass on to `executor.resolve*`
        // actually matches the one that you defined in `meta()` above.
        let database = executor.context();
        match field_name {
            // Because scalars are defined with another `Context` associated
            // type, you must use resolve_with_ctx here to make the executor
            // perform automatic type conversion of its argument.
            "id" => executor.resolve_with_ctx(info, &self.id),
            "name" => executor.resolve_with_ctx(info, &self.name),

            // You pass a vector of User objects to `executor.resolve`, and it
            // will determine which fields of the sub-objects to actually
            // resolve based on the query. The executor instance keeps track
            // of its current position in the query.
            "friends" => executor.resolve(info,
                &self.friend_ids.iter()
                    .filter_map(|id| database.users.get(id))
                    .collect::<Vec<_>>()
            ),

            // We can only reach this panic in two cases; either a mismatch
            // between the defined schema in `meta()` above, or a validation
            // in this library failed because of a bug.
            //
            // In either of those two cases, the only reasonable way out is
            // to panic the thread.
            _ => panic!("Field {} not found on type User", field_name),
        }
    }
}
```

*/
pub trait GraphQLType<S = DefaultScalarValue>: Sized
where
    S: ScalarValue,
    for<'b> &'b S: ScalarRefValue<'b>,
{
    /// The expected context type for this GraphQL type
    ///
    /// The context is threaded through query execution to all affected nodes,
    /// and can be used to hold common data, e.g. database connections or
    /// request session information.
    type Context;

    /// Type that may carry additional schema information
    ///
    /// This can be used to implement a schema that is partly dynamic,
    /// meaning that it can use information that is not known at compile time,
    /// for instance by reading it from a configuration file at start-up.
    type TypeInfo;

    /// The name of the GraphQL type to expose.
    ///
    /// This function will be called multiple times during schema construction.
    /// It must _not_ perform any calculation and _always_ return the same
    /// value.
    fn name(info: &Self::TypeInfo) -> Option<&str>;

    /// The meta type representing this GraphQL type.
    fn meta<'r>(info: &Self::TypeInfo, registry: &mut Registry<'r, S>) -> MetaType<'r, S>
    where
        S: 'r;

    /// Resolve the value of a single field on this type.
    ///
    /// The arguments object contain all specified arguments, with default
    /// values substituted for the ones not provided by the query.
    ///
    /// The executor can be used to drive selections into sub-objects.
    ///
    /// The default implementation panics.
    #[allow(unused_variables)]
    fn resolve_field(
        &self,
        info: &Self::TypeInfo,
        field_name: &str,
        arguments: &Arguments<S>,
        executor: &Executor<Self::Context, S>,
    ) -> ExecutionResult<S> {
        panic!("resolve_field must be implemented by object types");
    }

    /// Resolve this interface or union into a concrete type
    ///
    /// Try to resolve the current type into the type name provided. If the
    /// type matches, pass the instance along to `executor.resolve`.
    ///
    /// The default implementation panics.
    #[allow(unused_variables)]
    fn resolve_into_type(
        &self,
        info: &Self::TypeInfo,
        type_name: &str,
        selection_set: Option<&[Selection<S>]>,
        executor: &Executor<Self::Context, S>,
    ) -> ExecutionResult<S> {
        if Self::name(info).unwrap() == type_name {
            Ok(self.resolve(info, selection_set, executor))
        } else {
            panic!("resolve_into_type must be implemented by unions and interfaces");
        }
    }

    /// Return the concrete type name for this instance/union.
    ///
    /// The default implementation panics.
    #[allow(unused_variables)]
    fn concrete_type_name(&self, context: &Self::Context, info: &Self::TypeInfo) -> String {
        panic!("concrete_type_name must be implemented by unions and interfaces");
    }

    /// Resolve the provided selection set against the current object.
    ///
    /// For non-object types, the selection set will be `None` and the value
    /// of the object should simply be returned.
    ///
    /// For objects, all fields in the selection set should be resolved.
    ///
    /// The default implementation uses `resolve_field` to resolve all fields,
    /// including those through fragment expansion, for object types. For
    /// non-object types, this method panics.
    fn resolve(
        &self,
        info: &Self::TypeInfo,
        selection_set: Option<&[Selection<S>]>,
        executor: &Executor<Self::Context, S>,
    ) -> Value<S> {
        if let Some(selection_set) = selection_set {
            let mut result = Object::with_capacity(selection_set.len());
            if resolve_selection_set_into(self, info, selection_set, executor, &mut result) {
                Value::Object(result)
            } else {
                Value::null()
            }
        } else {
            panic!("resolve() must be implemented by non-object output types");
        }
    }
}

pub(crate) fn resolve_selection_set_into<T, CtxT, S>(
    instance: &T,
    info: &T::TypeInfo,
    selection_set: &[Selection<S>],
    executor: &Executor<CtxT, S>,
    result: &mut Object<S>,
) -> bool
where
    T: GraphQLType<S, Context = CtxT>,
    S: ScalarValue,
    for<'b> &'b S: ScalarRefValue<'b>,
{
    let meta_type = executor
        .schema()
        .concrete_type_by_name(
            T::name(info)
                .expect("Resolving named type's selection set")
                .as_ref(),
        )
        .expect("Type not found in schema");

    for selection in selection_set {
        match *selection {
            Selection::Field(Spanning {
                item: ref f,
                start: ref start_pos,
                ..
            }) => {
                if is_excluded(&f.directives, executor.variables()) {
                    continue;
                }

                let response_name = f.alias.as_ref().unwrap_or(&f.name).item;

                if f.name.item == "__typename" {
                    result.add_field(
                        response_name,
                        Value::scalar(instance.concrete_type_name(executor.context(), info)),
                    );
                    continue;
                }

                let meta_field = meta_type.field_by_name(f.name.item).unwrap_or_else(|| {
                    panic!(format!(
                        "Field {} not found on type {:?}",
                        f.name.item,
                        meta_type.name()
                    ))
                });

                let exec_vars = executor.variables();

                let sub_exec = executor.field_sub_executor(
                    response_name,
                    f.name.item,
                    start_pos.clone(),
                    f.selection_set.as_ref().map(|v| &v[..]),
                );

                let field_result = instance.resolve_field(
                    info,
                    f.name.item,
                    &Arguments::new(
                        f.arguments.as_ref().map(|m| {
                            m.item
                                .iter()
                                .map(|&(ref k, ref v)| {
                                    (k.item, v.item.clone().into_const(exec_vars))
                                })
                                .collect()
                        }),
                        &meta_field.arguments,
                    ),
                    &sub_exec,
                );

                match field_result {
                    Ok(Value::Null) if meta_field.field_type.is_non_null() => return false,
                    Ok(v) => merge_key_into(result, response_name, v),
                    Err(e) => {
                        sub_exec.push_error_at(e, start_pos.clone());

                        if meta_field.field_type.is_non_null() {
                            return false;
                        }

                        result.add_field(response_name, Value::null());
                    }
                }
            }
            Selection::FragmentSpread(Spanning {
                item: ref spread, ..
            }) => {
                if is_excluded(&spread.directives, executor.variables()) {
                    continue;
                }

                let fragment = &executor
                    .fragment_by_name(spread.name.item)
                    .expect("Fragment could not be found");

                if !resolve_selection_set_into(
                    instance,
                    info,
                    &fragment.selection_set[..],
                    executor,
                    result,
                ) {
                    return false;
                }
            }
            Selection::InlineFragment(Spanning {
                item: ref fragment,
                start: ref start_pos,
                ..
            }) => {
                if is_excluded(&fragment.directives, executor.variables()) {
                    continue;
                }

                let sub_exec = executor.type_sub_executor(
                    fragment.type_condition.as_ref().map(|c| c.item),
                    Some(&fragment.selection_set[..]),
                );

                if let Some(ref type_condition) = fragment.type_condition {
                    let sub_result = instance.resolve_into_type(
                        info,
                        type_condition.item,
                        Some(&fragment.selection_set[..]),
                        &sub_exec,
                    );

                    if let Ok(Value::Object(object)) = sub_result {
                        for (k, v) in object {
                            merge_key_into(result, &k, v);
                        }
                    } else if let Err(e) = sub_result {
                        sub_exec.push_error_at(e, start_pos.clone());
                    }
                } else if !resolve_selection_set_into(
                    instance,
                    info,
                    &fragment.selection_set[..],
                    &sub_exec,
                    result,
                ) {
                    return false;
                }
            }
        }
    }

    true
}

fn is_excluded<S>(directives: &Option<Vec<Spanning<Directive<S>>>>, vars: &Variables<S>) -> bool
where
    S: ScalarValue,
    for<'b> &'b S: ScalarRefValue<'b>,
{
    if let Some(ref directives) = *directives {
        for &Spanning {
            item: ref directive,
            ..
        } in directives
        {
            let condition: bool = directive
                .arguments
                .iter()
                .flat_map(|m| m.item.get("if"))
                .flat_map(|v| v.item.clone().into_const(vars).convert())
                .next()
                .unwrap();

            if (directive.name.item == "skip" && condition)
                || (directive.name.item == "include" && !condition)
            {
                return true;
            }
        }
    }
    false
}

fn merge_key_into<S>(result: &mut Object<S>, response_name: &str, value: Value<S>) {
    if let Some(&mut (_, ref mut e)) = result
        .iter_mut()
        .find(|&&mut (ref key, _)| key == response_name)
    {
        match *e {
            Value::Object(ref mut dest_obj) => {
                if let Value::Object(src_obj) = value {
                    merge_maps(dest_obj, src_obj);
                }
            }
            Value::List(ref mut dest_list) => {
                if let Value::List(src_list) = value {
                    dest_list
                        .iter_mut()
                        .zip(src_list.into_iter())
                        .for_each(|(d, s)| match d {
                            &mut Value::Object(ref mut d_obj) => {
                                if let Value::Object(s_obj) = s {
                                    merge_maps(d_obj, s_obj);
                                }
                            }
                            _ => {}
                        });
                }
            }
            _ => {}
        }
        return;
    }
    result.add_field(response_name, value);
}

fn merge_maps<S>(dest: &mut Object<S>, src: Object<S>) {
    for (key, value) in src {
        if dest.contains_field(&key) {
            merge_key_into(dest, &key, value);
        } else {
            dest.add_field(key, value);
        }
    }
}