1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
//! The main goal behind jlrs is to provide a simple and safe interface to the Julia C API that
//! lets you call code written in Julia from Rust and vice versa. Currently this crate is only
//! tested on Linux and Windows in combination with Julia 1.6 and is not compatible with earlier
//! versions of Julia.
//!
//!
//! # Features
//!
//! An incomplete list of features that are currently supported by jlrs:
//!
//!  - Access arbitrary Julia modules and their contents.
//!  - Call arbitrary Julia functions, including functions that take keyword arguments.
//!  - Include and use your own Julia code.
//!  - Load a custom system image.
//!  - Create values that Julia can use, and convert them back to Rust, from Rust.
//!  - Access the type information and fields of values and check their properties.
//!  - Create and use n-dimensional arrays.
//!  - Support for mapping Julia structs to Rust structs which can be generated with `JlrsReflect.jl`.
//!  - Structs that can be mapped to Rust include those with type parameters and bits unions.
//!  - Use these features when calling Rust from Julia through `ccall`.
//!  - Offload long-running functions to another thread and `.await` the result with the (experimental) async runtime.
//!
//!
//! # Generating the bindings
//!
//! This crate depends on `jl-sys` which contains the raw bindings to the Julia C API, these are
//! generated by `bindgen`. You can find the requirements for using `bindgen` in [their User Guide].
//!
//! #### Linux
//!
//! The recommended way to install Julia is to download the binaries from the official website,
//! which is distributed in an archive containing a directory called `julia-x.y.z`. This directory
//! contains several other directories, including a `bin` directory containing the `julia`
//! executable.
//!
//! In order to ensure the `julia.h` header file can be found, either `/usr/include/julia/julia.h`
//! must exist, or you have to set the `JULIA_DIR` environment variable to `/path/to/julia-x.y.z`.
//! This environment variable can be used to override the default. Similarly, in order to load
//! `libjulia.so` you must add `/path/to/julia-x.y.z/lib` to the `LD_LIBRARY_PATH` environment
//! variable.
//!
//! #### Windows
//!
//! The recommended way to install Julia is to download the installer from the official website,
//! which will install Julia in a folder called `Julia-x.y.z`. This folder contains several other
//! folders, including a `bin` folder containing the `julia.exe` executable. You must set the
//! `JULIA_DIR` environment variable to the `Julia-x.y.z` folder and add `Julia-x.y.z\bin` to the
//! `PATH` environment variable. For example, if Julia is installed at `D:\Julia-x.y.z`,
//! `JULIA_DIR` must be set to `D:\Julia-x.y.z` and `D:\Julia-x.y.z\bin` must be added to `PATH`.
//!
//! Additionally, MinGW must be installed through Cygwin. To install this and all potentially
//! required dependencies, follow steps 1-4 of
//! [the instructions for compiling Julia on Windows using Cygwin and MinGW].
//! You must set the `CYGWIN_DIR` environment variable to the installation folder of Cygwin; this
//! folder contains some icons, `Cygwin.bat` and folders with names like `usr` and `bin`. For
//! example, if Cygwin is installed at `D:\cygwin64`, `CYGWIN_DIR` must be set to `D:\cygwin64`.
//!
//! Julia is compatible with the GNU toolchain on Windows. If you use rustup, you can set the
//! toolchain for a project that depends on `jl-sys` by calling the command
//! `rustup override set stable-gnu` in the project root folder.
//!
//!
//! # Using this crate
//!
//! The first thing you should do is `use` the [`prelude`]-module with an asterisk, this will
//! bring all the structs and traits you're likely to need into scope. If you're calling Julia
//! from Rust, you must initialize Julia before you can use it. You can do this by calling
//! [`Julia::init`]. Note that this method can only be called once, if you drop [`Julia`] you won't
//! be able to create a new one and have to restart the entire program. If you want to use a
//! custom system image, you must call [`Julia::init_with_image`] instead of [`Julia::init`].
//! If you're calling Rust from Julia everything has already been initialized, you can use `CCall`
//! instead.
//!
//! ## Calling Julia from Rust
//!
//! You can call [`Julia::include`] to include your own Julia code and either [`Julia::frame`] or
//! [`Julia::dynamic_frame`] to interact with Julia.
//!
//! The other two methods, [`Julia::frame`] and [`Julia::dynamic_frame`], take a closure that
//! provides you with a [`Global`], and either a [`StaticFrame`] or [`DynamicFrame`] respectively.
//! [`Global`] is a token that lets you access Julia modules their contents, and other global
//! values, while the frames are used to deal with local Julia data.
//!
//! Local data must be handled properly: Julia is a programming language with a garbage collector
//! that is unaware of any references to data outside of Julia. In order to make it aware of this
//! usage a stack must be maintained. You choose this stack's size when calling [`Julia::init`].
//! The elements of this stack are called stack frames; they contain a pointer to the previous
//! frame, the number of protected values, and that number of pointers to values. The two frame
//! types offered by jlrs take care of all the technical details, a [`DynamicFrame`] will grow
//! to the required size while a [`StaticFrame`] has a definite number of slots. These frames can
//! be nested (ie stacked) arbitrarily.
//!
//! In order to call a Julia function, you'll need two things: a function to call, and arguments
//! to call it with. You can acquire the function through the module that defines it with
//! [`Module::function`]; [`Module::base`] and [`Module::core`] provide access to Julia's `Base`
//! and `Core` module respectively, while everything you include through [`Julia::include`] is
//! made available relative to the `Main` module which you can access by calling [`Module::main`].
//!
//! Julia data is represented by a [`Value`]. Basic data types like numbers, booleans, and strings
//! can be created through [`Value::new`] and several methods exist to create an n-dimensional
//! array. Each value will be protected by a frame, and the two share a lifetime in order to
//! enforce that a value can only be used as long as its protecting frame hasn't been dropped.
//! Julia functions, their arguments and their results are all `Value`s too. All `Value`s can be
//! called as functions, whether this will succeed depends on the value actually being a function.
//! You can copy data from Julia to Rust by calling [`Value::cast`].
//!
//! As a simple example, let's create two values and add them:
//!
//! ```no_run
//! # use jlrs::prelude::*;
//! # fn main() {
//! let mut julia = unsafe { Julia::init(16).unwrap() };
//! julia.dynamic_frame(|global, frame| {
//!     // Create the two arguments
//!     let i = Value::new(frame, 2u64)?;
//!     let j = Value::new(frame, 1u32)?;
//!
//!     // We can find the addition-function in the base module
//!     let func = Module::base(global).function("+")?;
//!
//!     // Call the function and unbox the result
//!     let output = func.call2(frame, i, j)?.unwrap();
//!     output.cast::<u64>()
//! }).unwrap();
//! # }
//! ```
//!
//! You can also do this with a static frame:
//!
//! ```no_run
//! # use jlrs::prelude::*;
//! # fn main() {
//! let mut julia = unsafe { Julia::init(16).unwrap() };
//! // Three slots; two for the inputs and one for the output.
//! julia.frame(3, |global, frame| {
//!     // Create the two arguments, each value requires one slot
//!     let i = Value::new(frame, 2u64)?;
//!     let j = Value::new(frame, 1u32)?;
//!
//!     // We can find the addition-function in the base module
//!     let func = Module::base(global).function("+")?;
//!
//!     // Call the function and unbox the result.  
//!     let output = func.call2(frame, i, j)?.unwrap();
//!     output.cast::<u64>()
//! }).unwrap();
//! # }
//! ```
//!
//! This is only a small example, other things can be done with [`Value`] as well: their fields
//! can be accessed if the [`Value`] is some tuple or struct. They can contain more complex data;
//! if a function returns an array or a module it will still be returned as a [`Value`]. There
//! complex types are compatible with [`Value::cast`]. Additionally, you can create [`Output`]s in
//! a frame in order to protect a value from with a specific frame; this value will share that
//! frame's lifetime.
//!
//! ## Standard library and installed packages
//!
//! Julia has a standard library that includes modules like `LinearAlgebra` and `Dates`, and comes
//! with a package manager that makes it easy to install new packages. In order to use these
//! modules and packages, they must first be loaded. This can be done by calling
//! [`Module::require`].
//!
//! ## Calling Rust from Julia
//!
//! Julia's `ccall` interface can be used to call `extern "C"` functions defined in Rust. There
//! are two major ways to use `ccall`, with a pointer to the function or a
//! `(:function, "library")` pair.
//!
//! A function can be cast to a void pointer and converted to a [`Value`]:
//!
//! ```no_run
//! # use jlrs::prelude::*;
//!
//! unsafe extern "C" fn call_me(arg: bool) -> isize {
//!     if arg {
//!         1
//!     } else {
//!         -1
//!     }
//! }
//!
//! # fn main() {
//! let mut julia = unsafe { Julia::init(16).unwrap() };
//! julia.frame(2, |global, frame| {
//!     // Cast the function to a void pointer
//!     let call_me_val = Value::new(frame, call_me as *mut std::ffi::c_void)?;
//!
//!     // `myfunc` will call the function pointer, it's defined in the next block of code
//!     let func = Module::main(global).function("myfunc")?;
//!
//!     // Call the function and unbox the result.  
//!     let output = func.call1(frame, call_me_val)?
//!         .unwrap()
//!         .cast::<isize>()?;
//!
//!     assert_eq!(output, 1);
//!     
//!     Ok(())
//! }).unwrap();
//! # }
//! ```
//!
//! This pointer can be called from Julia:
//!
//! ```julia
//! function myfunc(callme::Ptr{Cvoid})::Int
//!     ccall(callme, Int, (Bool,), true)
//! end
//! ```
//!
//! You can also use functions defined in `dylib` and `cdylib` libraries. In order to create such
//! a library you need to add
//!
//! ```toml
//! [lib]
//! crate-type = ["dylib"]
//! ```
//!
//! or  
//!
//! ```toml
//! [lib]
//! crate-type = ["cdylib"]
//! ```
//!
//! respectively to your crate's `Cargo.toml`. Use a `dylib` if you want to use the crate in other
//! Rust crates, but if it's only intended to be called through `ccall` a `cdylib` is the better
//! choice. On Linux, compiling such a crate will be compiled to `lib<crate_name>.so`, on Windows
//! `lib<crate_name>.dll`.
//!
//! The functions you want to use with `ccall` must be both `extern "C"` functions to ensure the C
//! ABI is used, and annotated with `#[no_mangle]` to prevent name mangling. Julia can find
//! libraries in directories that are either on the default library search path or included by
//! setting the `LD_LIBRARY_PATH` environment variable on Linux, or `PATH` on Windows. If the
//! compiled library is not directly visible to Julia, you can open it with `Libdl.dlopen` and
//! acquire function pointers with `Libdl.dlsym`. These pointers can be called the same way as
//! the pointer in the previous example.
//!
//! If the library is visible to Julia you can access it with the library name. If `call_me` is
//! defined in a crate called `foo`, the following should work:
//!
//! ```julia
//! ccall((:call_me, "libfoo"), Int, (Bool,), false)
//! ```
//!
//! One important aspect of calling Rust from other languages in general is that panicking across
//! an FFI boundary is undefined behaviour. If you're not sure your code will never panic, wrap it
//! with `std::panic::catch_unwind`.
//!
//! Many features provided by jlrs including accessing modules, calling functions, and borrowing
//! array data require a [`Global`] or a frame. You can access these by creating a [`CCall`]
//! first.
//!
//!
//! ## Async runtime
//!
//! The experimental async runtime runs Julia in a separate thread and allows multiple tasks to
//! run in parallel by offloading functions to a new thread in Julia and waiting for them to
//! complete without blocking the runtime. To use this feature you must enable the `async` feature
//! flag:
//!
//! ```toml
//! [dependencies]
//! jlrs = { version = "0.8", features = ["async"] }
//! ```
//!
//! This features is only supported on Linux.
//!
//! The struct [`AsyncJulia`] is exported by the prelude and lets you initialize the runtime in
//! two ways, either as a task or as a thread. The first type should be used if you want to
//! integrate the async runtime into a larger project that uses `async_std`. In order for the
//! runtime to work correctly the `JULIA_NUM_THREADS` environment variable must be set to a value
//! larger than 1.
//!
//! In order to call Julia with the async runtime you must implement the [`JuliaTask`] trait. The
//! `run`-method of this trait is similar to the closures that are used in the examples
//! above for the sync runtime; it provides you with a [`Global`] and an [`AsyncFrame`] which
//! implements the [`Frame`] trait. The [`AsyncFrame`] is required to use [`Value::call_async`]
//! which calls a function on a new thread using `Base.Threads.@spawn` and returns a `Future`.
//! While you await the result the runtime can handle another task. If you don't use
//! [`Value::call_async`] tasks are handled sequentially.
//!
//! It's important to keep in mind that allocating memory in Julia uses a lock, so if you run
//! multiple functions at the same time that allocate new values frequently the performance will
//! drop significantly. The garbage collector can only run when all threads have reached a
//! safepoint, which is the case whenever a function needs to allocate memory. If your function
//! takes a long time to complete but needs to allocate rarely, you should periodically call
//! `GC.safepoint` in Julia to ensure the garbage collector can run.
//!
//! You can find fully commented basic examples in [the examples directory of the repo].
//!
//!
//! # Custom types
//!
//! In order to map a struct in Rust to one in Julia you can derive [`JuliaStruct`]. This will
//! implement [`Cast`], [`JuliaType`], [`ValidLayout`], and [`JuliaTypecheck`] for that type. If
//! the struct in Julia has no type parameters and is a bits type you can also derive
//! [`IntoJulia`], which lets you use the type in combination with [`Value::new`].
//!
//! You should not implement these structs manually. The `JlrsReflect.jl` package can generate
//! the correct Rust struct for types that don't include any unions or tuples with type
//! parameters. The reason for this restriction is that the layout of tuple and union fields can
//! be very different depending on these parameters in a way that can't be nicely expressed in
//! Rust.
//!
//! These custom types can also be used when you call Rust from Julia through `ccall`.
//!
//!
//! # Lifetimes
//!
//! While reading the documentation for this crate, you will see that a lot of lifetimes are used.
//! Most of these lifetimes have a specific meaning:
//!
//! - `'base` is the lifetime of a frame created through [`Julia::frame`] or
//! [`Julia::dynamic_frame`]. This lifetime prevents you from using global Julia data outside of a
//! frame.
//!
//! - `'frame` is the lifetime of an arbitrary frame; in the base frame it will be the same as
//! `'base`. This lifetime prevents you from using Julia data after the frame that protects it
//! from garbage collection goes out of scope.
//!
//! - `'data` or `'borrow` is the lifetime of data that is borrowed. This lifetime prevents you
//! from mutably aliasing data and trying to use it after the borrowed data is dropped.
//!
//! - `'output` is the lifetime of the frame that created the output. This lifetime ensures that
//! when Julia data is protected by an older frame this data can be used until that frame goes out
//! of scope.
//!
//! [their User Guide]: https://rust-lang.github.io/rust-bindgen/requirements.html
//! [`prelude`]: prelude/index.html
//! [`Julia`]: struct.Julia.html
//! [`CCall`]: struct.CCall.html
//! [`Julia::init`]: struct.Julia.html#method.init
//! [`Julia::init_with_image`]: struct.Julia.html#method.init_with_image
//! [`Julia::include`]: struct.Julia.html#method.include
//! [`Julia::frame`]: struct.Julia.html#method.frame
//! [`Julia::dynamic_frame`]: struct.Julia.html#method.dynamic_frame
//! [`Global`]: global/struct.Global.html
//! [`Output`]: frame/struct.Output.html
//! [`AsyncFrame`]: frame/struct.AsyncFrame.html
//! [`StaticFrame`]: frame/struct.StaticFrame.html
//! [`DynamicFrame`]: frame/struct.DynamicFrame.html
//! [`Frame`]: traits/trait.Frame.html
//! [`JuliaStruct`]: traits/trait.JuliaStruct.html
//! [`Cast`]: traits/trait.Cast.html
//! [`JuliaType`]: traits/trait.JuliaType.html
//! [`JuliaTypecheck`]: traits/trait.JuliaTypecheck.html
//! [`ValidLayout`]: traits/trait.ValidLayout.html
//! [`IntoJulia`]: traits/trait.IntoJulia.html
//! [`Module::function`]: value/module/struct.Module.html#method.function
//! [`Module::base`]: value/module/struct.Module.html#method.base
//! [`Module::core`]: value/module/struct.Module.html#method.core
//! [`Module::main`]: value/module/struct.Module.html#method.main
//! [`JuliaTask`]: traits/multitask/trait.JuliaTask.html
//! [`Value`]: value/struct.Value.html
//! [`Value::new`]: value/struct.Value.html#method.new
//! [`Value::call_async`]: value/struct.Value.html#method.call_async
//! [`Value::cast`]: value/struct.Value.html#method.cast
//! [`AsyncJulia`]: multitask/struct.AsyncJulia.html
//! [the instructions for compiling Julia on Windows using Cygwin and MinGW]: https://github.com/JuliaLang/julia/blob/v1.5.2/doc/build/windows.md#cygwin-to-mingw-cross-compiling
//! [the examples directory of the repo]: https://github.com/Taaitaaiger/jlrs/tree/v0.8/examples

pub mod error;
pub mod frame;
pub mod global;
#[doc(hidden)]
pub mod jl_sys_export;
#[cfg(all(feature = "async", target_os = "linux"))]
pub mod julia_future;
pub mod mode;
#[cfg(all(feature = "async", target_os = "linux"))]
pub mod multitask;
pub mod prelude;
mod stack;
pub mod traits;
#[doc(hidden)]
pub mod util;
pub mod value;

use error::{JlrsError, JlrsResult};
use frame::{DynamicFrame, NullFrame, StaticFrame};
use global::Global;
use jl_sys::{jl_atexit_hook, jl_init, jl_init_with_image__threading, jl_is_initialized};
use mode::Sync;
use stack::{Dynamic, RawStack, StackView, Static};
use std::ffi::{c_void, CString};
use std::io::{Error as IOError, ErrorKind};
use std::mem::MaybeUninit;
use std::path::Path;
use std::ptr::null_mut;
use std::sync::atomic::{AtomicBool, Ordering};
use value::array::Array;
use value::module::Module;
use value::Value;

pub(crate) static INIT: AtomicBool = AtomicBool::new(false);

pub(crate) static JLRS_JL: &'static str = include_str!("jlrs.jl");

/// This struct can be created only once during the lifetime of your program. You must create it
/// with [`Julia::init`] or [`Julia::init_with_image`] before you can do anything related to
/// Julia. While this struct exists, Julia is active; dropping it causes the shutdown code to be
/// called.
///
/// [`Julia::init`]: struct.Julia.html#method.init
/// [`Julia::init_with_image`]: struct.Julia.html#method.init_with_image
pub struct Julia {
    stack: RawStack,
}

impl Julia {
    /// Initializes Julia, this function can only be called once. If you call it a second time it
    /// will return an error. If this struct is dropped, you will need to restart your program to
    /// be able to call Julia code again.
    ///
    /// You have to choose a stack size when calling this function. This will be the total number
    /// of slots that will be available for the GC stack. One of these slots will always be in
    /// use. Each frame needs two slots of overhead, plus one for every value created with that
    /// frame. A [`StaticFrame`] preallocates its slots, while a [`DynamicFrame`] grows to the
    /// required size. If calling a method requires one or more slots, this amount is explicitly
    /// documented.
    ///
    /// This function is unsafe because this crate provides you with a way to execute arbitrary
    /// Julia code which can't be checked for correctness.
    ///
    /// [`StaticFrame`]: frame/struct.StaticFrame.html
    /// [`DynamicFrame`]: frame/struct.DynamicFrame.html
    pub unsafe fn init(stack_size: usize) -> JlrsResult<Self> {
        if jl_is_initialized() != 0 || INIT.swap(true, Ordering::SeqCst) {
            return Err(JlrsError::AlreadyInitialized.into());
        }

        jl_init();
        let mut jl = Julia {
            stack: RawStack::new(stack_size),
        };

        jl.frame(2, |global, frame| {
            Value::eval_string(frame, JLRS_JL)?.expect("Could not load Jlrs module");

            let droparray_fn = Value::new(frame, droparray as *mut c_void)?;
            Module::main(global)
                .submodule("Jlrs")?
                .global("droparray")?
                .set_nth_field(0, droparray_fn)?;

            Ok(())
        })
        .expect("Could not load Jlrs module");

        Ok(jl)
    }

    /// This function is similar to [`Julia::init`] except that it loads a custom system image. A
    /// custom image can be generated with the [`PackageCompiler`] package for Julia. The main
    /// advantage of using a custom image over the default one is that it allows you to avoid much
    /// of the compilation overhead often associated with Julia.
    ///
    /// Two additional arguments are required to call this function compared to [`Julia::init`];
    /// `julia_bindir` and `image_relative_path`. The first must be the absolute path to a
    /// directory that contains a compatible Julia binary (eg `${JULIA_DIR}/bin`), the second must
    /// be either an absolute or a relative path to a system image.
    ///
    /// This function will return an error if either of the two paths does not exist or if Julia
    /// has already been initialized.
    ///
    /// [`Julia::init`]: struct.Julia.html#init
    /// [`PackageCompiler`]: https://julialang.github.io/PackageCompiler.jl/dev/
    pub unsafe fn init_with_image<P: AsRef<Path>>(
        stack_size: usize,
        julia_bindir: P,
        image_path: P,
    ) -> JlrsResult<Self> {
        if INIT.swap(true, Ordering::SeqCst) {
            Err(JlrsError::AlreadyInitialized)?;
        }

        let julia_bindir_str = julia_bindir.as_ref().to_string_lossy().to_string();
        let image_path_str = image_path.as_ref().to_string_lossy().to_string();

        if !julia_bindir.as_ref().exists() {
            let io_err = IOError::new(ErrorKind::NotFound, julia_bindir_str);
            return Err(JlrsError::other(io_err))?;
        }

        if !image_path.as_ref().exists() {
            let io_err = IOError::new(ErrorKind::NotFound, image_path_str);
            return Err(JlrsError::other(io_err))?;
        }

        let bindir = CString::new(julia_bindir_str).unwrap();
        let im_rel_path = CString::new(image_path_str).unwrap();

        jl_init_with_image__threading(bindir.as_ptr(), im_rel_path.as_ptr());

        let mut jl = Julia {
            stack: RawStack::new(stack_size),
        };

        jl.frame(2, |global, frame| {
            Value::eval_string(frame, JLRS_JL)?.expect("Could not load Jlrs module");

            let droparray_fn = Value::new(frame, droparray as *mut c_void)?;
            Module::main(global)
                .submodule("Jlrs")?
                .global("droparray")?
                .set_nth_field(0, droparray_fn)?;

            Ok(())
        })
        .expect("Could not load Jlrs module");

        Ok(jl)
    }

    /// Change the stack size to `stack_size`.
    pub fn set_stack_size(&mut self, stack_size: usize) {
        unsafe { self.stack = RawStack::new(stack_size) }
    }

    /// Returns the current stack size.
    pub fn stack_size(&self) -> usize {
        self.stack.size()
    }

    /// Calls `include` in the `Main` module in Julia, which executes the file's contents in that
    /// module. This has the same effect as calling `include` in the Julia REPL.
    ///
    /// Example:
    ///
    /// ```no_run
    /// # use jlrs::prelude::*;
    /// # fn main() {
    /// # let mut julia = unsafe { Julia::init(16).unwrap() };
    /// julia.include("MyJuliaCode.jl").unwrap();
    /// # }
    /// ```
    pub fn include<P: AsRef<Path>>(&mut self, path: P) -> JlrsResult<()> {
        if path.as_ref().exists() {
            return self.frame(3, |global, frame| {
                let path_jl_str = Value::new(frame, path.as_ref().to_string_lossy())?;
                let include_func = Module::main(global).function("include")?;
                let res = include_func.call1(frame, path_jl_str)?;

                return match res {
                    Ok(_) => Ok(()),
                    Err(e) => Err(JlrsError::IncludeError(
                        path.as_ref().to_string_lossy().into(),
                        e.type_name().into(),
                    )
                    .into()),
                };
            });
        }

        Err(JlrsError::IncludeNotFound(path.as_ref().to_string_lossy().into()).into())
    }

    /// Create a [`StaticFrame`] that can hold `capacity` values, and call the given closure.
    /// Returns the result of this closure, or an error if the new frame can't be created because
    /// there's not enough space on the GC stack. The number of required slots on the stack is
    /// `capacity + 2`.
    ///
    /// Every output and value you create inside the closure using the [`StaticFrame`], either
    /// directly or through calling a [`Value`], will reduce the available capacity of the
    /// [`StaticFrame`] by 1.
    ///
    /// Example:
    ///
    /// ```
    /// # use jlrs::prelude::*;
    /// # use jlrs::util::JULIA;
    /// # fn main() {
    /// # JULIA.with(|j| {
    /// # let mut julia = j.borrow_mut();
    ///   julia.frame(1, |_global, frame| {
    ///       let i = Value::new(frame, 1u64)?;
    ///       Ok(())
    ///   }).unwrap();
    /// # });
    /// # }
    /// ```
    ///
    /// [`StaticFrame`]: ../frame/struct.StaticFrame.html
    /// [`Value`]: ../value/struct.Value.html
    pub fn frame<'base, 'julia: 'base, T, F>(
        &'julia mut self,
        capacity: usize,
        func: F,
    ) -> JlrsResult<T>
    where
        F: FnOnce(Global<'base>, &mut StaticFrame<'base, Sync>) -> JlrsResult<T>,
    {
        unsafe {
            let d = self.stack.as_mut();
            let global = Global::new();
            let mut view = StackView::<Sync, Static>::new(d);
            let frame_idx = view.new_frame(capacity)?;
            let mut frame = StaticFrame::with_capacity(frame_idx, capacity, view);
            func(global, &mut frame)
        }
    }

    /// Create a [`DynamicFrame`] and call the given closure. Returns the result of this closure,
    /// or an error if the new frame can't be created because the stack is too small. The number
    /// of required slots on the stack is 2.
    ///
    /// Every output and value you create inside the closure using the [`DynamicFrame`], either
    /// directly or through calling a [`Value`], will occupy a single slot on the GC stack.
    ///
    /// Example:
    ///
    /// ```
    /// # use jlrs::prelude::*;
    /// # use jlrs::util::JULIA;
    /// # fn main() {
    /// # JULIA.with(|j| {
    /// # let mut julia = j.borrow_mut();
    /// julia.dynamic_frame(|_global, frame| {
    ///     let j = Value::new(frame, 1u64)?;
    ///     Ok(())
    /// }).unwrap();
    /// # });
    /// # }
    /// ```
    ///
    /// [`DynamicFrame`]: ../frame/struct.DynamicFrame.html
    /// [`Value`]: ../value/struct.Value.html
    pub fn dynamic_frame<'base, 'julia: 'base, T, F>(&'julia mut self, func: F) -> JlrsResult<T>
    where
        F: FnOnce(Global<'base>, &mut DynamicFrame<'base, Sync>) -> JlrsResult<T>,
    {
        unsafe {
            let d = self.stack.as_mut();
            let global = Global::new();
            let mut view = StackView::<Sync, Dynamic>::new(d);
            let frame_idx = view.new_frame()?;
            let mut frame = DynamicFrame::new(frame_idx, view);
            func(global, &mut frame)
        }
    }
}

impl Drop for Julia {
    fn drop(&mut self) {
        unsafe {
            jl_atexit_hook(0);
        }
    }
}

/// When you call Rust from Julia through `ccall`, Julia has already been initialized and trying to
/// initialize it again would cause a crash. In order to still be able to call Julia from Rust
/// and to borrow arrays (if you pass them as `Array` rather than `Ptr{Array}`), you'll need to
/// create a frame first. You can use this struct to do so. It must never be used outside
/// functions called through `ccall`.
///
/// If you only need to use a frame to borrow array data, you can use [`CCall::null`] and
/// [`CCall::null_frame`]. Unlike [`Julia`], `CCall` postpones the allocation of the stack that is
/// used for managing the GC until a static or dynamic frame is created. In the case of a null
/// frame, this stack isn't allocated at all. Unlike the other frame types null frames can't be
/// nested.
///
/// [`Julia`]: struct.Julia.html
/// [`CCall::null_frame`]: struct.CCall.html#method.null_frame
/// [`CCall::null`]: struct.CCall.html#method.null
pub struct CCall {
    stack: Option<RawStack>,
    stack_size: usize,
}

impl CCall {
    /// Create a new `CCall` that provides a stack with `stack_size` slots. This functions the
    /// same way as [`Julia::init`] does. This function must never be called outside a function
    /// called through `ccall` from Julia and must only be called once during that call. The stack
    /// is not allocated untl a static or dynamic frame is created.
    ///
    /// [`Julia::init`]: struct.Julia.html#method.init
    pub unsafe fn new(stack_size: usize) -> Self {
        CCall {
            stack: None,
            stack_size,
        }
    }

    /// Create a new `CCall` that provides a stack with no slots. This means only creating a null
    /// frame is supported. This function must never be called outside a function
    /// called through `ccall` from Julia and must only be called once during that call. The stack
    /// is not allocated untl a static or dynamic frame is created.
    pub unsafe fn null() -> Self {
        CCall::new(0)
    }

    /// Change the stack size to `stack_size`.
    pub fn set_stack_size(&mut self, stack_size: usize) {
        self.stack_size = stack_size;
        if self.stack.is_some() {
            unsafe { self.stack = Some(RawStack::new(stack_size)) }
        }
    }

    /// Returns the current stack size.
    pub fn stack_size(&self) -> usize {
        self.stack_size
    }

    /// Create a [`StaticFrame`] that can hold `capacity` values, and call the given closure.
    /// Returns the result of this closure, or an error if the new frame can't be created because
    /// there's not enough space on the GC stack. The number of required slots on the stack is
    /// `capacity + 2`.
    ///
    /// Every output and value you create inside the closure using the [`StaticFrame`], either
    /// directly or through calling a [`Value`], will reduce the available capacity of the
    /// [`StaticFrame`] by 1.
    ///
    /// [`StaticFrame`]: ../frame/struct.StaticFrame.html
    /// [`Value`]: ../value/struct.Value.html
    pub fn frame<'base, 'julia: 'base, T, F>(
        &'julia mut self,
        capacity: usize,
        func: F,
    ) -> JlrsResult<T>
    where
        F: FnOnce(Global<'base>, &mut StaticFrame<'base, Sync>) -> JlrsResult<T>,
    {
        unsafe {
            self.ensure_init_stack()
                .map(|s| {
                    let d = s.as_mut();
                    let global = Global::new();
                    let mut view = StackView::<Sync, Static>::new(d);
                    let frame_idx = view.new_frame(capacity)?;
                    let mut frame = StaticFrame::with_capacity(frame_idx, capacity, view);
                    func(global, &mut frame)
                })
                .unwrap_or_else(|| std::hint::unreachable_unchecked()) // The stack is guaranteed to be initialized
        }
    }

    /// Create a [`DynamicFrame`] and call the given closure. Returns the result of this closure,
    /// or an error if the new frame can't be created because the stack is too small. The number
    /// of required slots on the stack is 2.
    ///
    /// Every output and value you create inside the closure using the [`DynamicFrame`], either
    /// directly or through calling a [`Value`], will occupy a single slot on the GC stack.
    ///
    /// [`DynamicFrame`]: ../frame/struct.DynamicFrame.html
    /// [`Value`]: ../value/struct.Value.html
    pub fn dynamic_frame<'base, 'julia: 'base, T, F>(&'julia mut self, func: F) -> JlrsResult<T>
    where
        F: FnOnce(Global<'base>, &mut DynamicFrame<'base, Sync>) -> JlrsResult<T>,
    {
        unsafe {
            self.ensure_init_stack()
                .map(|s| {
                    let d = s.as_mut();
                    let global = Global::new();
                    let mut view = StackView::<Sync, Dynamic>::new(d);
                    let frame_idx = view.new_frame()?;
                    let mut frame = DynamicFrame::new(frame_idx, view);
                    func(global, &mut frame)
                })
                .unwrap_or_else(|| std::hint::unreachable_unchecked()) // The stack is guaranteed to be initialized
        }
    }

    /// Create a [`NullFrame`] and call the given closure. A [`NullFrame`] cannot be nested and
    /// can only be used to (mutably) borrow array data. Unlike the other frame-creating methods,
    /// no `Global` is provided to the closure.
    ///
    /// [`NullFrame`]: ../frame/struct.NullFrame.html
    /// [`Global`]: ../global/struct.Global.html
    pub fn null_frame<'base, 'julia: 'base, T, F>(&'julia mut self, func: F) -> JlrsResult<T>
    where
        F: FnOnce(&mut NullFrame<'base>) -> JlrsResult<T>,
    {
        unsafe {
            let mut frame = NullFrame::new(self);
            func(&mut frame)
        }
    }

    #[inline(always)]
    fn ensure_init_stack(&mut self) -> Option<&mut RawStack> {
        if self.stack.is_none() {
            unsafe {
                self.stack = Some(RawStack::new(self.stack_size));
            }
        }

        self.stack.as_mut()
    }
}

unsafe extern "C" fn droparray(a: Array) {
    // The data of a moved array is allocated by Rust, this function is called by
    // a finalizer in order to ensure it's also freed by Rust.
    let arr_ref = &mut *a.ptr();

    if arr_ref.flags.how() != 2 {
        return;
    }

    let data_ptr = arr_ref.data.cast::<MaybeUninit<u8>>();
    arr_ref.data = null_mut();
    let n_els = arr_ref.elsize as usize * arr_ref.length;
    Vec::from_raw_parts(data_ptr, n_els, n_els);
}