1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
use std::cmp::Ordering;
use std::collections::{BTreeSet, BinaryHeap};

use hashbrown::HashMap;
use ordered_float::OrderedFloat;

use super::{Keyword, KeywordExtract, STOP_WORDS};
use crate::Jieba;

type Weight = f64;

#[derive(Clone)]
struct Edge {
    src: usize,
    dst: usize,
    weight: Weight,
}

impl Edge {
    fn new(src: usize, dst: usize, weight: Weight) -> Edge {
        Edge { src, dst, weight }
    }
}

type Edges = Vec<Edge>;
type Graph = Vec<Edges>;

struct StateDiagram {
    damping_factor: Weight,
    g: Graph,
}

impl StateDiagram {
    fn new(size: usize) -> Self {
        StateDiagram {
            damping_factor: 0.85,
            g: vec![Vec::new(); size],
        }
    }

    fn add_undirected_edge(&mut self, src: usize, dst: usize, weight: Weight) {
        self.g[src].push(Edge::new(src, dst, weight));
        self.g[dst].push(Edge::new(dst, src, weight));
    }

    fn rank(&mut self) -> Vec<Weight> {
        let n = self.g.len();
        let default_weight = 1.0 / (n as f64);

        let mut ranking_vector = vec![default_weight; n];

        let mut outflow_weights = vec![0.0; n];
        for (i, v) in self.g.iter().enumerate() {
            outflow_weights[i] = v.iter().map(|e| e.weight).sum();
        }

        for _ in 0..20 {
            for (i, v) in self.g.iter().enumerate() {
                let s: f64 = v
                    .iter()
                    .map(|e| e.weight / outflow_weights[e.dst] * ranking_vector[e.dst])
                    .sum();

                ranking_vector[i] = (1.0 - self.damping_factor) + self.damping_factor * s;
            }
        }

        ranking_vector
    }
}

/// Text rank keywords extraction
///
/// Requires `textrank` feature to be enabled
#[derive(Debug)]
pub struct TextRank<'a> {
    jieba: &'a Jieba,
    span: usize,
    stop_words: BTreeSet<String>,
}

impl<'a> TextRank<'a> {
    pub fn new_with_jieba(jieba: &'a Jieba) -> Self {
        TextRank {
            jieba,
            span: 5,
            stop_words: STOP_WORDS.clone(),
        }
    }

    /// Add a new stop word
    pub fn add_stop_word(&mut self, word: String) -> bool {
        self.stop_words.insert(word)
    }

    /// Remove an existing stop word
    pub fn remove_stop_word(&mut self, word: &str) -> bool {
        self.stop_words.remove(word)
    }

    /// Replace all stop words with new stop words set
    pub fn set_stop_words(&mut self, stop_words: BTreeSet<String>) {
        self.stop_words = stop_words
    }

    #[inline]
    fn filter(&self, s: &str) -> bool {
        if s.chars().count() < 2 {
            return false;
        }

        if self.stop_words.contains(&s.to_lowercase()) {
            return false;
        }

        true
    }
}

impl<'a> KeywordExtract for TextRank<'a> {
    fn extract_tags(&self, sentence: &str, top_k: usize, allowed_pos: Vec<String>) -> Vec<Keyword> {
        let tags = self.jieba.tag(sentence, true);
        let mut allowed_pos_set = BTreeSet::new();

        for s in allowed_pos {
            allowed_pos_set.insert(s);
        }

        let mut word2id: HashMap<String, usize> = HashMap::new();
        let mut unique_words = Vec::new();
        for t in &tags {
            if !allowed_pos_set.is_empty() && !allowed_pos_set.contains(t.tag) {
                continue;
            }

            if word2id.get(t.word).is_none() {
                unique_words.push(String::from(t.word));
                word2id.insert(String::from(t.word), unique_words.len() - 1);
            }
        }

        let mut cooccurence: HashMap<(usize, usize), usize> = HashMap::new();
        for (i, t) in tags.iter().enumerate() {
            if !allowed_pos_set.is_empty() && !allowed_pos_set.contains(t.tag) {
                continue;
            }

            if !self.filter(t.word) {
                continue;
            }

            for j in (i + 1)..(i + self.span) {
                if j >= tags.len() {
                    break;
                }

                if !allowed_pos_set.is_empty() && !allowed_pos_set.contains(tags[j].tag) {
                    continue;
                }

                if !self.filter(tags[j].word) {
                    continue;
                }

                let u = word2id.get(t.word).unwrap().to_owned();
                let v = word2id.get(tags[j].word).unwrap().to_owned();
                let entry = cooccurence.entry((u, v)).or_insert(0);
                *entry += 1;
            }
        }

        let mut diagram = StateDiagram::new(unique_words.len());
        for (k, &v) in cooccurence.iter() {
            diagram.add_undirected_edge(k.0, k.1, v as f64);
        }

        let ranking_vector = diagram.rank();

        let mut heap = BinaryHeap::new();
        for (k, v) in ranking_vector.iter().enumerate() {
            heap.push(HeapNode {
                rank: OrderedFloat(v * 1e10),
                word_id: k,
            });

            if k >= top_k {
                heap.pop();
            }
        }

        let mut res = Vec::new();
        for _ in 0..top_k {
            if let Some(w) = heap.pop() {
                res.push(Keyword {
                    keyword: unique_words[w.word_id].clone(),
                    weight: w.rank.into_inner(),
                });
            }
        }

        res.reverse();
        res
    }
}

#[derive(Debug, Clone, Eq, PartialEq)]
struct HeapNode {
    rank: OrderedFloat<f64>,
    word_id: usize,
}

impl Ord for HeapNode {
    fn cmp(&self, other: &HeapNode) -> Ordering {
        other
            .rank
            .cmp(&self.rank)
            .then_with(|| self.word_id.cmp(&other.word_id))
    }
}

impl PartialOrd for HeapNode {
    fn partial_cmp(&self, other: &HeapNode) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_init_textrank() {
        let jieba = Jieba::new();
        let _ = TextRank::new_with_jieba(&jieba);
    }

    #[test]
    fn test_init_state_diagram() {
        let diagram = StateDiagram::new(10);
        assert_eq!(diagram.g.len(), 10);
    }

    #[test]
    fn test_extract_tags() {
        let jieba = Jieba::new();
        let keyword_extractor = TextRank::new_with_jieba(&jieba);
        let mut top_k = keyword_extractor.extract_tags(
            "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。",
            6,
            vec![String::from("ns"), String::from("n"), String::from("vn"), String::from("v")],
        );
        assert_eq!(
            top_k.iter().map(|x| &x.keyword).collect::<Vec<&String>>(),
            vec!["吉林", "欧亚", "置业", "实现", "收入", "增资"]
        );

        top_k = keyword_extractor.extract_tags(
            "It is nice weather in New York City. and今天纽约的天气真好啊,and京华大酒店的张尧经理吃了一只北京烤鸭。and后天纽约的天气不好,and昨天纽约的天气也不好,and北京烤鸭真好吃",
            3,
            vec![],
        );
        assert_eq!(
            top_k.iter().map(|x| &x.keyword).collect::<Vec<&String>>(),
            vec!["纽约", "天气", "不好"]
        );
    }
}