1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
//! Wrap an iterator, and get progress data as it's executed. A more advanced
//! [`.enumerate()`](https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.enumerate)
//!
//! # Usage
//! Call `.progress()` on any Iterator, and get a new iterator that yields `(ProgressRecord, T)`, where `T`
//! is the original value. A `ProgressRecord` has many helpful methods to query the current state
//! of the iterator
//!
//! # Example
//!
//! ```
//! use iter_progress::ProgressableIter;
//! // Create an iterator that goes from 0 to 1,000
//! let my_iter = 0..1_000;
//! let mut progressor = my_iter.progress();
//!
//! // This new iterator returns a struct with the current state, and the inner object returned by
//! // the iterator
//! let (state, number) = progressor.next().unwrap();
//! assert_eq!(number, 0);
//! 
//! // We can now use methods on `state` to find out about this object
//!
//! // 0 to 1
//! assert_eq!(state.fraction(), Some(0.001));
//! // We are 0.1% the way through
//! assert_eq!(state.percent(), Some(0.1));
//! ```
//! 
//! There are numerous ergnomic methods for access data on the state of the iterator
//! 
use std::iter::Iterator;
use std::time::{Instant, Duration};

/// Every step of the underlying iterator, one of these is generated. It contains all the
/// information of how this iterator is progresing. Use the methods to access data on it.
///
pub struct ProgressRecord {

    /// How many elements before this
    num: usize,

    /// How long since we started iterating.
    iterating_for: Duration,

    size_hint: (usize, Option<usize>),

    recent_rate: f32,

    /// The timestamp of when the previous record was created. Will be None if this is first.
    previous_record_tm: Option<Instant>,

    /// When the iteration started
    started_iterating: Instant,

}

impl ProgressRecord {

    /// Duration since iteration started
    pub fn duration_since_start(&self) -> Duration {
        self.iterating_for
    }

    /// Number of items we've generated so far. Will be 0 for the first element
    ///
    /// ``
    /// # use iter_progress::ProgressableIter;
    /// let mut progressor = (0..1_000).progress();
    /// let (state, num) = progressor.next().unwrap();
    /// assert_eq!(state.num_done(), 0);
    /// ```
    ///
    /// ```
    /// # use iter_progress::ProgressableIter;
    /// let mut progressor = (0..1_000).progress().skip(120);
    /// let (state, num) = progressor.next().unwrap();
    /// assert_eq!(state.num_done(), 121);
    /// ```
    pub fn num_done(&self) -> usize {
        self.num
    }

    /// `Instant` for when the previous record was generated. None if there was no previous record.
    /// 
    /// This can be useful for calculating fine grained rates
    pub fn previous_record_tm(&self) -> Option<Instant> {
        self.previous_record_tm
    }

    /// When the iteration started
    pub fn started_iterating(&self) -> Instant {
        self.started_iterating
    }

    /// Prints a basic message
    pub fn print_message(&self) {
        println!("{}", self.message());
    }

    /// Returns a basic log message of where we are now. You can construct this yourself, but this
    /// is a helpful convience method.
    /// Currently looks likt "{time_since_start} - Seen {num_see} Rate {rate}/sec", but the library
    /// might change it later. Construct your own message.
    pub fn message(&self) -> String {
        format!("{} - Seen {} Rate {}/sec", self.duration_since_start().as_secs(), self.num_done(), self.recent_rate())
    }

    /// Number of items per second, calcualted from the start
    pub fn rate(&self) -> f32 {
        // number of items per second
        let duration_since_start = self.duration_since_start();
        (self.num_done() as f32) / (duration_since_start.as_secs() as f32)
    }

    /// How far through the iterator as a fraction, if known
    ///
    /// ```
    /// use iter_progress::ProgressableIter;
    /// let mut progressor = (0..1_000).progress().skip(120);
    /// let (state, num) = progressor.next().unwrap();
    /// assert_eq!(num, 120);
    /// assert_eq!(state.fraction(), Some(0.121));
    /// ```
    ///
    /// Returns None if we cannot know, e.g. for an infinite iterator
    /// ```
    /// # use iter_progress::ProgressableIter;
    /// let mut progressor = (0..).progress().skip(120);
    /// let (state, num) = progressor.next().unwrap();
    /// assert_eq!(state.fraction(), None);
    /// ```
    pub fn fraction(&self) -> Option<f32> {
        if self.is_size_known() {
            let remaining = self.size_hint.0;
            let done = self.num_done();
            Some(( done as f32 ) / ( (remaining+done) as f32 ))
        } else {
            None
        }
    }

    /// Percentage progress through the iterator, if known.
    ///
    /// ```
    /// use iter_progress::ProgressableIter;
    /// let mut progressor = (0..1_000).progress().skip(120);
    /// let (state, num) = progressor.next().unwrap();
    /// assert_eq!(state.percent(), Some(12.1));
    /// ```
    ///
    /// Returns None if we cannot know, e.g. for an infinite iterator
    /// ```
    /// # use iter_progress::ProgressableIter;
    /// let mut progressor = (0..).progress().skip(120);
    /// let (state, num) = progressor.next().unwrap();
    /// assert_eq!(state.percent(), None);
    /// ```
    pub fn percent(&self) -> Option<f32> {
        match self.fraction() {
            None => { None }
            Some(f) => { Some(f * 100.0) }
        }
    }

    /// Print out `msg`, but only if there has been `n` seconds since last printout
    pub fn print_every_n_sec<T: std::fmt::Display>(&self, n: f32, msg: T) {
        if self.should_do_every_n_sec(n) {
            print!("{}", msg);
        }
    }

    /// Do thing but only every n sec (as far as possible).
    /// Could be a print statement.
    pub fn do_every_n_sec<F: Fn(&Self)>(&self, n: f32, f: F) {
        if self.should_do_every_n_sec(n) {
            f(self);
        }
    }

    /// If we want to print every `n` sec, should we print now?
    pub fn should_do_every_n_sec(&self, n: f32) -> bool {
        // get the secs since start as a f32
        let duration_since_start = self.duration_since_start();
        let secs_since_start: f32 = duration_since_start.as_secs() as f32 + duration_since_start.subsec_nanos() as f32 / 1_000_000_000.0;

        match self.previous_record_tm() {
            None => {
                // This iteration is the first time, so we should print if more than `n` seconds
                // have gone past
                secs_since_start > n
            },
            Some(last_time) => {
                let last_time_offset = last_time - self.started_iterating();
                let last_time_offset: f32 = last_time_offset.as_secs() as f32 + last_time_offset.subsec_nanos() as f32 / 1_000_000_000.0;

                let current_step = secs_since_start / n;
                let last_step = last_time_offset / n;

                current_step.trunc() > last_step.trunc()
            },
        }
    }

    /// If we want to print every `n` items, should we print now?
    pub fn should_do_every_n_items(&self, n: usize) -> bool {
        (self.num_done() - 1) % n == 0
    }


    /// Print out `msg`, but only if there has been `n` items.
    /// Often you want to print out a debug message every 1,000 items or so. This function does
    /// that.
    pub fn print_every_n_items<T: std::fmt::Display>(&self, n: usize, msg: T) {
        if self.should_do_every_n_items(n) {
            print!("{}", msg);
        }
    }

    /// Do thing but only every `n` items.
    /// Could be a print statement.
    ///
    /// takes 2 arguments, `n` and the function (`f`) which takes a `&ProgressState`. `f` will only
    /// be called every `n` items that pass through the iterator.
    ///
    /// ```
    /// # use iter_progress::ProgressableIter;
    /// for (state, _) in (0..150).progress() {
    ///    state.do_every_n_items(5, |state| {
    ///        println!("Current progress: {}%", state.percent().unwrap());
    ///    });
    /// }
    /// ```
    pub fn do_every_n_items<F: Fn(&Self)>(&self, n: usize, f: F) {
        if self.should_do_every_n_items(n) {
            f(self);
        }
    }

    /// Do we know how big this iterator is?
    /// False iff there is some ambiguity/unknown
    fn is_size_known(&self) -> bool {
        match self.size_hint.1 {
            None => { false },
            Some(x) => { self.size_hint.0 == x },
        }
    }

    /// The rate of the last few items.
    pub fn recent_rate(&self) -> f32 {
        self.recent_rate
    }

}

/// Wraps an iterator and keeps track of state used for `ProgressRecord`'s
pub struct ProgressRecorderIter<I> {

    /// The iterator that we are iteating on
    iter: I,

    /// How many items have been seen
    count: usize,

    /// When did we start iterating
    started_iterating: Instant,

    /// Keeps track of recent times
    recent_times: Vec<Instant>
}

impl<I: Iterator> ProgressRecorderIter<I> {
    /// Create a new `ProgressRecorderIter` from another iterator.
    pub fn new(iter: I) -> ProgressRecorderIter<I> {
        ProgressRecorderIter{ iter: iter, count: 0, started_iterating: Instant::now(), recent_times: Vec::with_capacity(5) }
    }

    /// Calculate the current `ProgressRecord` for where we are now.
    fn generate_record(&mut self) -> ProgressRecord {
        // recent_times is a vec of times, with newer times at the end. However it'll always be <
        // 100 elements long.
        let now = Instant::now();
        self.recent_times.push(now);
        while self.recent_times.len() > 100 {
            self.recent_times.remove(0);
        }

        let recent_rate = match self.recent_times.get(0) {
            None => ::std::f32::INFINITY,
            Some(&first) => {
                let dur = now - first;
                (self.recent_times.len() as f32 ) / (dur.as_secs() as f32)
            },
        };

        // last element of recent_times will be the current time, for this record. so second last
        // will be the previous time. In python we'd do [-1] for the last, and [-2] for second
        // last.
        let previous_record_tm = match self.recent_times.len() {
            0 | 1 => { None },
            _ => {
                self.recent_times.get(self.recent_times.len()-2).map(|t| { t.clone() })
            }
        };

        self.count += 1;
        ProgressRecord{ num: self.count, iterating_for: now - self.started_iterating, size_hint: self.iter.size_hint(), recent_rate: recent_rate, previous_record_tm: previous_record_tm, started_iterating: self.started_iterating }
    }

    /// Gets the original iterator back
    pub fn into_inner(self) -> I {
        self.iter
    }

}

/// An iterator that records it's progress as it goes along
pub trait ProgressableIter<I> {
    fn progress(self) -> ProgressRecorderIter<I>;
}

impl<I> ProgressableIter<I> for I where I: Iterator {
    /// Convert an iterator into a `ProgressRecorderIter`.
    fn progress(self) -> ProgressRecorderIter<I> {
        ProgressRecorderIter::new(self)
    }
}


impl<I> Iterator for ProgressRecorderIter<I> where I: Iterator {
    type Item = (ProgressRecord, <I as Iterator>::Item);


    #[inline]
    fn next(&mut self) -> Option<(ProgressRecord, <I as Iterator>::Item)> {
        self.iter.next().map(|a| {
            (self.generate_record(), a)
        })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    #[inline]
    fn count(self) -> usize {
        self.iter.count()
    }
}



mod test {
    #[test]
    fn test_simple() {
        use super::ProgressableIter;
        use std::thread::sleep;
        use std::time::Duration;

        let vec: Vec<u8> = vec![0, 1, 2, 3, 4];
        let mut progressor = vec.iter().progress();

        sleep(Duration::from_millis(500));
        let (state, _) = progressor.next().unwrap();
        assert_eq!(state.message(), "0 - Seen 1 Rate inf/sec");
        // It'll always print on the first one
        assert_eq!(state.should_do_every_n_items(2), true);
        assert_eq!(state.should_do_every_n_items(3), true);
        assert_eq!(state.should_do_every_n_items(5), true);
        assert_eq!(state.rate(), ::std::f32::INFINITY);
        assert_eq!(state.recent_rate(), ::std::f32::INFINITY);
        // First run, so there should be nothing here
        assert!(state.previous_record_tm().is_none());

        assert_eq!(state.should_do_every_n_sec(1.), false);
        assert_eq!(state.should_do_every_n_sec(2.), false);
        assert_eq!(state.should_do_every_n_sec(0.3), true);


        sleep(Duration::from_millis(500));

        let (state, _) = progressor.next().unwrap();
        assert_eq!(state.message(), "1 - Seen 2 Rate inf/sec");
        assert_eq!(state.should_do_every_n_items(2), false);
        assert_eq!(state.should_do_every_n_items(3), false);
        assert_eq!(state.should_do_every_n_items(5), false);
        assert_eq!(state.rate(), 2.);
        //assert_eq!(state.recent_rate(), 2.);
        // This'll be the time for the first one
        assert!(state.previous_record_tm().is_some());
        let since_last_time = state.previous_record_tm().unwrap().elapsed();
        assert!(since_last_time < Duration::from_millis(550));
        assert!(since_last_time >= Duration::from_millis(500));
        assert_eq!(state.should_do_every_n_sec(1.), true);
        assert_eq!(state.should_do_every_n_sec(2.), false);
        assert_eq!(state.should_do_every_n_sec(0.8), true);

        sleep(Duration::from_millis(500));
        let (state, _) = progressor.next().unwrap();
        assert_eq!(state.message(), "1 - Seen 3 Rate 3/sec");
        assert_eq!(state.should_do_every_n_items(2), true);
        assert_eq!(state.should_do_every_n_items(3), false);
        assert_eq!(state.should_do_every_n_items(5), false);
        assert_eq!(state.rate(), 3.);
        assert_eq!(state.recent_rate(), 3.);
        assert_eq!(state.should_do_every_n_sec(1.), false);
        assert_eq!(state.should_do_every_n_sec(2.), false);
        assert_eq!(state.should_do_every_n_sec(0.8), false);
        assert_eq!(state.should_do_every_n_sec(1.5), true);

        sleep(Duration::from_millis(500));
        let (state, _) = progressor.next().unwrap();
        assert_eq!(state.message(), "2 - Seen 4 Rate 4/sec");
        assert_eq!(state.should_do_every_n_items(2), false);
        assert_eq!(state.should_do_every_n_items(3), true);
        assert_eq!(state.should_do_every_n_items(5), false);
        assert_eq!(state.rate(), 2.);
        assert_eq!(state.recent_rate(), 4.);
    }

    #[test]
    fn test_size_hint() {
        use super::ProgressableIter;

        let vec: Vec<u8> = vec![0, 1, 2, 3, 4];
        let mut progressor = vec.iter().progress();

        let (state, _) = progressor.next().unwrap();
        assert_eq!(state.fraction(), Some(0.2));
        assert_eq!(state.percent(), Some(20.));

        let (state, _) = progressor.next().unwrap();
        assert_eq!(state.fraction(), Some(0.4));
        assert_eq!(state.percent(), Some(40.));

        let mut progressor = (0..).progress();

        let (state, val) = progressor.next().unwrap();
        assert_eq!(val, 0);
        assert_eq!(state.fraction(), None);
        let (state, val) = progressor.next().unwrap();
        assert_eq!(val, 1);
        assert_eq!(state.fraction(), None);

    }
}