1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
//! Determine whether floating point numbers are close in value
//!
//! In use cases such as testing it is often times more useful to know whether two floating point
//! numbers are close to each other rather than exactly equal. Due to finite precision of computers,
//! we usually cannot even expect bitwise equality of two values even if underlaying math suggests
//! it. This is where [`is_close`](https://crates.io/crates/is_close) comes in. The crate is
//! strongly inspired by
//! [Python's PEP 485 _aka_ `math.isclose`](https://www.python.org/dev/peps/pep-0485/).
//!
//! ## Examples
//!
//! **Basic usage ...**
//! ```
//! extern crate is_close;
//! use is_close::default;
//!
//! assert!(default().is_close(42.0, 42.0));
//! assert!(!default().is_close(13.0, 37.0));
//!
//! assert!(default().all_close(vec![9.0, 10.0], vec![9.0, 10.0]));
//! assert!(!default().all_close(vec![0.0, 10.0], vec![9.0, 10.0]));
//!
//! assert!(default().any_close(vec![0.0, 10.0], vec![9.0, 10.0]));
//! assert!(!default().any_close(vec![0.0, 0.0], vec![9.0, 10.0]));
//! ```
//!
//! **... and the same with macros**
//! ```
//! #[macro_use]
//! extern crate is_close;
//!
//! # fn main() {
//! assert!(is_close!(42.0, 42.0));
//! assert!(!is_close!(13.0, 37.0));
//!
//! assert!(all_close!(vec![9.0, 10.0], vec![9.0, 10.0]));
//! assert!(!all_close!(vec![0.0, 10.0], vec![9.0, 10.0]));
//!
//! assert!(any_close!(vec![0.0, 10.0], vec![9.0, 10.0]));
//! assert!(!any_close!(vec![0.0, 0.0], vec![9.0, 10.0]));
//! # }
//! ```
//!
//! ### Advanced Usage
//!
//! There are different ways to determine whether two values are close to each other or not.
//! There are a few paramenters playing into the comparison of two floats. `is_close` comes with
//! sane [default settings](fn.default.html). However, the following examples illustrate how to
//! tweak the comparison to suit your needs:
//!
//! **Relative Tolerance:** the amount of error allowed, relative to the magnitude of the input
//! values:
//! ```
//! # #[macro_use]
//! # extern crate is_close;
//! # fn main() {
//! assert!(is_close!(9.9, 10.0, rel_tol=1e-2));
//! assert!(!is_close!(9.9, 10.0, rel_tol=1e-3));
//! # }
//! ```
//!
//! **Absolute Tolerance:** useful for comparisons to zero:
//! ```
//! # #[macro_use]
//! # extern crate is_close;
//! # fn main() {
//! assert!(is_close!(0.0, 0.1, abs_tol=1e-1));
//! assert!(!is_close!(0.0, 0.1, abs_tol=1e-2));
//! # }
//! ```
//!
//! **Other Methods:** the strategy of how to interpret relative tolerance, see
//! [`Method`](enum.Method.html):
//! ```
//! # #[macro_use]
//! # extern crate is_close;
//! # use is_close::default;
//! use is_close::{ASYMMETRIC, WEAK, STRONG, AVERAGE};
//!
//! # fn main() {
//! // Weak: relative tolerance is scaled by the larger of the two values (default)
//! assert!(default().method("weak").rel_tol(1e-1).is_close(9.0, 10.0));
//! assert!(default().method("weak").rel_tol(1e-1).is_close(10.0, 9.0));
//! assert!(!default().method(WEAK).rel_tol(1e-2).is_close(9.0, 10.0));
//! assert!(!default().method(WEAK).rel_tol(1e-2).is_close(10.0, 9.0));
//!
//! // Strong: relative tolerance is scaled by the smaller of the two values
//! assert!(all_close!(vec![9.0, 10.0], vec![10.0, 9.0], rel_tol=2e-1, method="STRONG"));
//! assert!(!any_close!(vec![9.0, 10.0], vec![10.0, 9.0], rel_tol=1e-1, method=STRONG));
//!
//! // Average: relative tolerance is scaled by the average of the two values
//! assert!(is_close!(9.0, 10.0, rel_tol=2e-1, method="average"));
//! assert!(is_close!(10.0, 9.0, rel_tol=2e-1, method="average"));
//! assert!(!is_close!(9.0, 10.0, rel_tol=1e-1, method=AVERAGE));
//! assert!(!is_close!(10.0, 9.0, rel_tol=1e-1, method=AVERAGE));
//!
//! // Asymmetric: he second value (`b`) is used for scaling the tolerance
//! let ic = default().method(ASYMMETRIC).rel_tol(1e-1).compile();
//! assert!(ic(9.0, 10.0));
//! assert!(!ic(10.0, 9.0));
//! # }
//! ```
//!
extern crate num_traits;

use std::fmt::{Debug, Formatter};

use num_traits::{cast, Float};

/// Strategies of handling relative tolerance
///
/// For detailed reasoning on the pros and cons of the different variants checkout
/// [PEP 485](https://www.python.org/dev/peps/pep-0485/#relative-difference).
///
#[derive(Clone, Debug)]
pub enum Method {
    /// Relative tolerance is scaled by the larger of the two values (default)
    Weak,
    /// Relative tolerance is scaled by the smaller of the two values
    Strong,
    /// Relative tolerance is scaled by the average of the two values
    Average,
    /// The second value (`b`) is used for scaling the tolerance
    Asymmetric,
}

/// Shorthand for [`Method::Asymmetric`](enum.Method.html)
pub const ASYMMETRIC: Method = Method::Asymmetric;

/// Shorthand for [`Method::Average`](enum.Method.html)
pub const AVERAGE: Method = Method::Average;

/// Shorthand for [`Method::Strong`](enum.Method.html)
pub const STRONG: Method = Method::Strong;

/// Shorthand for [`Method::Weak`](enum.Method.html)
pub const WEAK: Method = Method::Weak;

impl From<&str> for Method {
    fn from(s: &str) -> Self {
        match s.to_lowercase().as_ref() {
            "asymmetric" => Self::Asymmetric,
            "average" => Self::Average,
            "strong" => Self::Strong,
            "weak" => Self::Weak,
            _ => panic!(format!("unknown method {:?}", s)),
        }
    }
}

/// Compare two floats with some tolerance
///
/// This type holds information on how to compare floats and is heavily inspired by
/// [Python's PEP 485](https://www.python.org/dev/peps/pep-0485/). It holds the following parameters:
///
/// - `rel_tol`: maximum difference for being considered "close", relative to the magnitude of the
///         input values, defaults to 1e-8
/// - `abs_tol`: maximum difference for being considered "close", regardless of the magnitude of the
///         input values, defaults to 0.0
/// - `method`: strategy of how to interpret relative tolerance, see [`Method`](enum.Method.html)
///
pub struct IsClose<T: Float> {
    _rel_tol: T,
    _abs_tol: T,
    _method: Method,
}

impl<T: Float> Default for IsClose<T> {
    fn default() -> Self {
        IsClose {
            _rel_tol: cast::cast(1e-8).unwrap(),
            _abs_tol: cast::cast(0.0).unwrap(),
            _method: WEAK,
        }
    }
}

impl<T: Float + Debug> Debug for IsClose<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        let mut f = f.debug_struct("IsClose");

        f.field("rel_tol", &self._rel_tol);
        f.field("abs_tol", &self._abs_tol);
        f.field("method", &self._method);

        f.finish()
    }
}

impl<T: Float + 'static> IsClose<T> {
    /// Set the relative tolerance
    pub fn rel_tol(&mut self, value: T) -> &mut Self {
        self._rel_tol = value.abs();
        self
    }

    /// Set the absolute tolerance
    pub fn abs_tol(&mut self, value: T) -> &mut Self {
        self._abs_tol = value.abs();
        self
    }

    /// Set the strategy used to handle relative tolerance
    pub fn method<M: Into<Method>>(&mut self, method: M) -> &mut Self {
        self._method = method.into();
        self
    }

    /// Compile current configuration into a closure which increases speed when called multiple times
    pub fn compile(&self) -> Box<dyn Fn(T, T) -> bool> {
        let rel_tol = self._rel_tol;
        let abs_tol = self._abs_tol;

        let _is_close: Box<dyn Fn(T, T, T) -> bool> = match self._method {
            Method::Asymmetric => {
                Box::new(move |_, b, diff| (diff <= Float::abs(rel_tol * b)) || (diff <= abs_tol))
            }
            Method::Average => Box::new(move |a, b, diff| {
                diff <= (rel_tol * (a + b) / cast::cast(2.0).unwrap()).abs() || (diff <= abs_tol)
            }),
            Method::Strong => Box::new(move |a, b, diff| {
                ((diff <= Float::abs(rel_tol * b)) && (diff <= Float::abs(rel_tol * a)))
                    || (diff <= abs_tol)
            }),
            Method::Weak => Box::new(move |a, b, diff| {
                ((diff <= Float::abs(rel_tol * b)) || (diff <= Float::abs(rel_tol * a)))
                    || (diff <= abs_tol)
            }),
        };

        Box::new(move |a: T, b: T| {
            // trivial case
            if a == b {
                return true;
            }

            // check border cases
            let diff = (b - a).abs();
            if !diff.is_finite() {
                return false;
            }

            // assess difference by chosen method
            _is_close(a, b, diff)
        })
    }

    /// Check whether or not two values `a` and `b` are "close" to each other
    pub fn is_close(&self, a: T, b: T) -> bool {
        self.compile()(a, b)
    }

    /// Check whether or not two iterables `a` and `b` are pairwise "close" to each other
    pub fn all_close<I, J>(&self, a: I, b: J) -> bool
    where
        I: IntoIterator<Item = T>,
        J: IntoIterator<Item = T>,
    {
        let _is_close = self.compile();
        a.into_iter()
            .zip(b.into_iter())
            .all(|(x, y)| _is_close(x, y))
    }

    /// Check whether or not two iterables `a` and `b` are pairwise "close" to each other in at least one place
    pub fn any_close<I, J>(&self, a: I, b: J) -> bool
    where
        I: IntoIterator<Item = T>,
        J: IntoIterator<Item = T>,
    {
        let _is_close = self.compile();
        a.into_iter()
            .zip(b.into_iter())
            .any(|(x, y)| _is_close(x, y))
    }
}

/// Create default [`IsClose`](struct.IsClose.html) configuration: `{ rel_tol: 1e-8, abs_tol: 0.0, method: "weak" }`
pub fn default<T: Float>() -> IsClose<T> {
    IsClose::default()
}

/// Check whether or not two values `a` and `b` are "close" to each other
///
/// ## Usage
/// ```
/// #[macro_use]
/// extern crate is_close;
/// use is_close::AVERAGE;
///
/// # fn main() {
/// assert!(is_close!(1.0, 1.0));
/// assert!(!is_close!(1.0, 2.0));
/// assert!(is_close!(9.0, 10.0, rel_tol=2e-1, method=AVERAGE));
/// assert!(!is_close!(9.0, 10.0, rel_tol=1e-1, method=AVERAGE));
/// # }
/// ```
#[macro_export]
macro_rules! is_close {
    ($a:expr, $b:expr $(, $set:ident = $val:expr)*) => {
        {
            $crate::default()$(.$set($val))*.is_close($a, $b)
        }
    };
}

/// Check whether or not two iterables `a` and `b` are pairwise "close" to each other
///
/// ## Usage
/// ```
/// #[macro_use]
/// extern crate is_close;
/// use is_close::STRONG;
///
/// # fn main() {
/// assert!(all_close!(vec![9.0, 10.0], vec![9.0, 10.0]));
/// assert!(!all_close!(vec![0.0, 10.0], vec![9.0, 10.0]));
/// assert!(all_close!(vec![9.0, 10.0], vec![10.0, 9.0], rel_tol=2e-1, method=STRONG));
/// assert!(!all_close!(vec![9.0, 10.0], vec![10.0, 0.0], rel_tol=2e-1, method=STRONG));
/// # }
/// ```
#[macro_export]
macro_rules! all_close {
    ($a:expr, $b:expr $(, $set:ident = $val:expr)*) => {
        {
            $crate::default()$(.$set($val))*.all_close($a, $b)
        }
    };
}

/// Check whether or not two iterables `a` and `b` are pairwise "close" to each other in at least one place
///
/// ## Usage
/// ```
/// #[macro_use]
/// extern crate is_close;
/// use is_close::STRONG;
///
/// # fn main() {
/// assert!(any_close!(vec![0.0, 10.0], vec![9.0, 10.0]));
/// assert!(!any_close!(vec![0.0, 0.0], vec![9.0, 10.0]));
/// assert!(any_close!(vec![9.0, 10.0], vec![10.0, 9.5], rel_tol=1e-1, method=STRONG));
/// assert!(!any_close!(vec![9.0, 10.0], vec![10.0, 9.0], rel_tol=1e-1, method=STRONG));
/// # }
/// ```
#[macro_export]
macro_rules! any_close {
    ($a:expr, $b:expr $(, $set:ident = $val:expr)*) => {
        {
            $crate::default()$(.$set($val))*.any_close($a, $b)
        }
    };
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_debug() {
        assert_eq!(
            "IsClose { rel_tol: 0.00000001, abs_tol: 0.0, method: Weak }",
            format!("{:?}", default::<f64>())
        )
    }

    #[test]
    fn test_exact() {
        for (a, b) in &[
            (2.0, 2.0),
            (0.1e200, 0.1e200),
            (1.123e-300, 1.123e-300),
            (0.0, -0.0),
        ] {
            assert!(default().rel_tol(0.0).abs_tol(0.0).is_close(*a, *b));
            assert!(is_close!(*a, *b, abs_tol = 0.0));
        }
    }

    #[test]
    fn test_relative() {
        for (a, b) in &[
            (1e8, 1e8 + 1.),
            (-1e-8, -1.000000009e-8),
            (1.12345678, 1.12345679),
        ] {
            assert!(default().rel_tol(1e-8).is_close(*a, *b));
            assert!(is_close!(*a, *b, rel_tol = 1e-8));
            assert!(!default().rel_tol(1e-9).is_close(*a, *b));
            assert!(!is_close!(*a, *b, rel_tol = 1e-9));
        }
    }

    #[test]
    fn test_zero() {
        for (a, b) in &[(1e-9, 0.0), (-1e-9, 0.0), (-1e-150, 0.0)] {
            assert!(default().abs_tol(1e-8).is_close(*a, *b));
            assert!(is_close!(*a, *b, abs_tol = 1e-8));
            assert!(!default().rel_tol(0.9).is_close(*a, *b));
            assert!(!is_close!(*a, *b, rel_tol = 0.9));
        }
    }

    #[test]
    fn test_non_finite() {
        for (a, b) in &[
            (f64::INFINITY, f64::INFINITY),
            (f64::NEG_INFINITY, f64::NEG_INFINITY),
        ] {
            assert!(default().abs_tol(0.999999999999999).is_close(*a, *b));
            assert!(is_close!(*a, *b, abs_tol = 0.999999999999999));
        }

        for (a, b) in &[
            (f64::NAN, f64::NAN),
            (f64::NAN, 1e-100),
            (1e-100, f64::NAN),
            (f64::INFINITY, f64::NAN),
            (f64::NAN, f64::INFINITY),
            (f64::INFINITY, f64::NEG_INFINITY),
            (f64::INFINITY, 1.0),
            (1.0, f64::INFINITY),
        ] {
            assert!(!default().abs_tol(0.999999999999999).is_close(*a, *b));
            assert!(!is_close!(*a, *b, abs_tol = 0.999999999999999));
        }
    }

    #[test]
    fn test_other_methods() {
        assert!(default().method("weak").rel_tol(1e-1).is_close(9.0, 10.0));
        assert!(default().method("weak").rel_tol(1e-1).is_close(10.0, 9.0));
        assert!(!default().method(WEAK).rel_tol(1e-2).is_close(9.0, 10.0));
        assert!(!default().method(WEAK).rel_tol(1e-2).is_close(10.0, 9.0));

        assert!(all_close!(
            vec![9.0, 10.0],
            vec![10.0, 9.0],
            rel_tol = 2e-1,
            method = "STRONG"
        ));
        assert!(!any_close!(
            vec![9.0, 10.0],
            vec![10.0, 9.0],
            rel_tol = 1e-1,
            method = STRONG
        ));

        assert!(is_close!(9.0, 10.0, rel_tol = 2e-1, method = "average"));
        assert!(is_close!(10.0, 9.0, rel_tol = 2e-1, method = "average"));
        assert!(!is_close!(9.0, 10.0, rel_tol = 1e-1, method = AVERAGE));
        assert!(!is_close!(10.0, 9.0, rel_tol = 1e-1, method = AVERAGE));

        let ic = default().method(ASYMMETRIC).rel_tol(1e-1).compile();
        assert!(ic(9.0, 10.0));
        assert!(!ic(10.0, 9.0));
    }

    #[test]
    #[should_panic(expected = "unknown method \"fnord\"")]
    fn test_unknown_method() {
        default::<f64>().method("fnord");
    }

    #[test]
    fn test_all_close() {
        assert!(default().all_close(vec![0.0, 1.0, 2.0], (0..3).into_iter().map(|i| i as f64)));
        assert!(all_close!(
            vec![0.0, 1.0, 2.0],
            (0..3).into_iter().map(|i| i as f64)
        ));
        assert!(!default().all_close(vec![0.0, 1.0, 3.0], (0..3).into_iter().map(|i| i as f64)));
        assert!(!all_close!(
            vec![0.0, 1.0, 3.0],
            (0..3).into_iter().map(|i| i as f64)
        ));
    }
}