1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//! The `ipnetwork` crate provides a set of APIs to work with IP CIDRs in
//! Rust. Implementation for IPv4 is more or less stable, IPv6 implementation
//! is still WIP.
#![cfg_attr(feature = "dev", feature(plugin))]
#![cfg_attr(feature = "dev", plugin(clippy))]
#![cfg_attr(feature = "ipv6-iterator", feature(i128_type))]
#![cfg_attr(feature = "ipv6-methods", feature(i128_type))]
#![crate_type = "lib"]
#![doc(html_root_url = "https://docs.rs/ipnetwork/0.12.8")]

#[cfg(feature = "with-serde")]
extern crate serde;
#[cfg(feature = "with-serde")]
#[macro_use]
extern crate serde_derive;

use std::fmt;
use std::net::IpAddr;

mod ipv4;
mod ipv6;
mod common;

use std::str::FromStr;

pub use ipv4::{Ipv4Network, ipv4_mask_to_prefix};
pub use ipv6::{Ipv6Network, ipv6_mask_to_prefix};
pub use common::IpNetworkError;

/// Represents a generic network range. This type can have two variants:
/// the v4 and the v6 case.
#[cfg_attr(feature = "with-serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub enum IpNetwork {
    V4(Ipv4Network),
    V6(Ipv6Network),
}

impl IpNetwork {
    /// Constructs a new `IpNetwork` from a given `IpAddr` and a prefix denoting the
    /// network size. If the prefix is larger than 32 (for IPv4) or 128 (for IPv6), this
    /// will raise an `IpNetworkError::InvalidPrefix` error. Support for IPv6 is not
    /// complete yet.
    pub fn new(ip: IpAddr, prefix: u8) -> Result<IpNetwork, IpNetworkError> {
        match ip {
            IpAddr::V4(a) => Ok(IpNetwork::V4(Ipv4Network::new(a, prefix)?)),
            IpAddr::V6(a) => Ok(IpNetwork::V6(Ipv6Network::new(a, prefix)?)),
        }
    }

    /// Returns the IP part of a given `IpNetwork`
    pub fn ip(&self) -> IpAddr {
        match *self {
            IpNetwork::V4(ref a) => IpAddr::V4(a.ip()),
            IpNetwork::V6(ref a) => IpAddr::V6(a.ip()),
        }
    }

    /// Returns the prefix of the given `IpNetwork`
    ///
    /// # Example
    /// ```
    /// use ipnetwork::IpNetwork;
    ///
    /// assert_eq!(IpNetwork::V4("10.9.0.32/16".parse().unwrap()).prefix(), 16u8);
    /// assert_eq!(IpNetwork::V6("ff01::0/32".parse().unwrap()).prefix(), 32u8);
    /// ```
    pub fn prefix(&self) -> u8 {
        match *self {
            IpNetwork::V4(ref a) => a.prefix(),
            IpNetwork::V6(ref a) => a.prefix(),
        }
    }

    /// Returns the mask for this `IpNetwork`.
    /// That means the `prefix` most significant bits will be 1 and the rest 0
    ///
    /// # Example
    /// ```
    /// use ipnetwork::IpNetwork;
    /// use std::net::{Ipv4Addr, Ipv6Addr};
    ///
    /// let v4_net: IpNetwork = "10.9.0.32/16".parse().unwrap();
    /// assert_eq!(v4_net.mask(), Ipv4Addr::new(255, 255, 0, 0));
    /// let v6_net: IpNetwork = "ff01::0/32".parse().unwrap();
    /// assert_eq!(v6_net.mask(), Ipv6Addr::new(0xffff, 0xffff, 0, 0, 0, 0, 0, 0));
    ///```
    pub fn mask(&self) -> IpAddr {
        match *self {
            IpNetwork::V4(ref a) => IpAddr::V4(a.mask()),
            IpNetwork::V6(ref a) => IpAddr::V6(a.mask()),
        }
    }

    /// Returns true if the IP in this `IpNetwork` is a valid IPv4 address,
    /// false if it's a valid IPv6 address.
    ///
    /// # Example
    ///
    ///```
    /// use ipnetwork::IpNetwork;
    ///
    /// let v4: IpNetwork = IpNetwork::V4("10.9.0.32/16".parse().unwrap());
    /// assert_eq!(v4.is_ipv4(), true);
    /// assert_eq!(v4.is_ipv6(), false);
    ///```
    pub fn is_ipv4(&self) -> bool {
        match *self {
            IpNetwork::V4(_) => true,
            IpNetwork::V6(_) => false,
        }
    }

    /// Returns true if the IP in this `IpNetwork` is a valid IPv6 address,
    /// false if it's a valid IPv4 address.
    ///
    /// # Example
    ///
    ///```
    /// use ipnetwork::IpNetwork;
    ///
    /// let v6: IpNetwork = IpNetwork::V6("ff01::0/32".parse().unwrap());
    /// assert_eq!(v6.is_ipv6(), true);
    /// assert_eq!(v6.is_ipv4(), false);
    ///```
    pub fn is_ipv6(&self) -> bool {
        match *self {
            IpNetwork::V4(_) => false,
            IpNetwork::V6(_) => true,
        }
    }

    /// Checks if a given `IpAddr` is in this `IpNetwork`
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::IpAddr;
    /// use ipnetwork::IpNetwork;
    ///
    /// let net: IpNetwork = "127.0.0.0/24".parse().unwrap();
    /// let ip1: IpAddr = "127.0.0.1".parse().unwrap();
    /// let ip2: IpAddr = "172.0.0.1".parse().unwrap();
    /// let ip4: IpAddr = "::1".parse().unwrap();
    /// assert!(net.contains(ip1));
    /// assert!(!net.contains(ip2));
    /// assert!(!net.contains(ip4));
    /// ```
    pub fn contains(&self, ip: IpAddr) -> bool {
        match (*self, ip) {
            (IpNetwork::V4(net), IpAddr::V4(ip)) => net.contains(ip),
            (IpNetwork::V6(net), IpAddr::V6(ip)) => net.contains(ip),
            _ => false,
        }
    }
}

/// Tries to parse the given string into a `IpNetwork`. Will first try to parse
/// it as an `Ipv4Network` and if that fails as an `Ipv6Network`. If both
/// fails it will return an `InvalidAddr` error.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnetwork::{IpNetwork, Ipv4Network};
///
/// let expected = IpNetwork::V4(Ipv4Network::new(Ipv4Addr::new(10, 1, 9, 32), 16).unwrap());
/// let from_cidr: IpNetwork = "10.1.9.32/16".parse().unwrap();
/// assert_eq!(expected, from_cidr);
/// ```
impl FromStr for IpNetwork {
    type Err = IpNetworkError;
    fn from_str(s: &str) -> Result<IpNetwork, IpNetworkError> {
        if let Ok(net) = Ipv4Network::from_str(s) {
            Ok(IpNetwork::V4(net))
        } else if let Ok(net) = Ipv6Network::from_str(s) {
            Ok(IpNetwork::V6(net))
        } else {
            Err(IpNetworkError::InvalidAddr(s.to_string()))
        }
    }
}

impl From<Ipv4Network> for IpNetwork {
    fn from(v4: Ipv4Network) -> IpNetwork {
        IpNetwork::V4(v4)
    }
}

impl From<Ipv6Network> for IpNetwork {
    fn from(v6: Ipv6Network) -> IpNetwork {
        IpNetwork::V6(v6)
    }
}

impl From<IpAddr> for IpNetwork {
    fn from(addr: IpAddr) -> IpNetwork {
        match addr {
            IpAddr::V4(a) => IpNetwork::V4(Ipv4Network::from(a)),
            IpAddr::V6(a) => IpNetwork::V6(Ipv6Network::from(a)),
        }
    }
}

impl fmt::Display for IpNetwork {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            IpNetwork::V4(net) => net.fmt(f),
            IpNetwork::V6(net) => net.fmt(f),
        }
    }
}

/// Converts a `IpAddr` network mask into a prefix.
/// If the mask is invalid this will return an `IpNetworkError::InvalidPrefix`.
pub fn ip_mask_to_prefix(mask: IpAddr) -> Result<u8, IpNetworkError> {
    match mask {
        IpAddr::V4(mask) => ipv4_mask_to_prefix(mask),
        IpAddr::V6(mask) => ipv6_mask_to_prefix(mask),
    }
}