1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
use std;
use std::cmp::{min, max};
use std::fmt;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};

use emu128::emu128;
use ipext::{ipv6_addr_from_emu128, ipv6_addr_into_emu128, IpAdd, IpSub, IpBitAnd, IpBitOr};
use saturating_shifts::{SaturatingShl, SaturatingShr};

#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub enum IpNet {
    V4(Ipv4Net),
    V6(Ipv6Net),
}

#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub struct Ipv4Net {
    addr: Ipv4Addr,
    prefix_len: u8,
}

#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub struct Ipv6Net {
    addr: Ipv6Addr,
    prefix_len: u8,
}

// For the time being deref method calls to the IpAddr implemenations.

// TODO: Not sure if there is a way to do this?
/*impl std::ops::Deref for IpNet {
    type Target = IpAddr;
    fn deref(&self) -> &Self::Target {
        match *self {
            IpNet::V4(ref a) => a.addr,
            IpNet::V6(ref a) => a.addr,
        }
    }
}*/

impl std::ops::Deref for Ipv4Net {
    type Target = Ipv4Addr;
    fn deref(&self) -> &Self::Target {
        &self.addr
    }
}

impl std::ops::Deref for Ipv6Net {
    type Target = Ipv6Addr;
    fn deref(&self) -> &Self::Target {
        &self.addr
    }
}

impl IpNet {
    pub fn netmask(&self) -> IpAddr {
        match *self {
            IpNet::V4(ref a) => IpAddr::V4(a.netmask()),
            IpNet::V6(ref a) => IpAddr::V6(a.netmask()),
        }
    }

    pub fn hostmask(&self) -> IpAddr {
        match *self {
            IpNet::V4(ref a) => IpAddr::V4(a.hostmask()),
            IpNet::V6(ref a) => IpAddr::V6(a.hostmask()),
        }
    }
    
    pub fn network(&self) -> IpAddr {
        match *self {
            IpNet::V4(ref a) => IpAddr::V4(a.network()),
            IpNet::V6(ref a) => IpAddr::V6(a.network()),
        }
    }
    
    pub fn broadcast(&self) -> IpAddr {
        match *self {
            IpNet::V4(ref a) => IpAddr::V4(a.broadcast()),
            IpNet::V6(ref a) => IpAddr::V6(a.broadcast()),
        }
    }
    
    pub fn supernet(&self) -> IpNet {
        match *self {
            IpNet::V4(ref a) => IpNet::V4(a.supernet()),
            IpNet::V6(ref a) => IpNet::V6(a.supernet()),
        }
    }

    pub fn contains(&self, other: &IpNet) -> bool {
        match (*self, *other) {
            (IpNet::V4(ref a), IpNet::V4(ref b)) => a.contains(b),
            (IpNet::V6(ref a), IpNet::V6(ref b)) => a.contains(b),
            (_, _) => false,
        }
    }

    pub fn sibling_of(&self, other: &IpNet) -> bool {
        match (*self, *other) {
            (IpNet::V4(ref a), IpNet::V4(ref b)) => a.sibling_of(b),
            (IpNet::V6(ref a), IpNet::V6(ref b)) => a.sibling_of(b),
            (_, _) => false,
        }
    }
}

impl Ipv4Net {
    // TODO: Should new() precompute the netmask, hostmask, network, and
    // broadcast addresses and store these to save recomputing everytime
    // the methods are called?
    // TODO: Should new() truncate the input IpAddr to the prefix_len and
    // store that instead of the supplied address? Technically it doesn't
    // matter, but users may expect that.
    pub fn new(ip: Ipv4Addr, prefix_len: u8) -> Ipv4Net {
        // TODO: Need to implement a proper error handling scheme.
        let prefix_len = if prefix_len > 32 { 32 } else { prefix_len };
        Ipv4Net { addr: ip, prefix_len: prefix_len }
    }

    pub fn netmask(&self) -> Ipv4Addr {
        Ipv4Addr::from(0xffffffffu32.saturating_shl(32 - self.prefix_len))
    }

    pub fn hostmask(&self) -> Ipv4Addr {
        Ipv4Addr::from(0xffffffffu32.saturating_shr(self.prefix_len))
    }

    pub fn network(&self) -> Ipv4Addr {
        self.addr.bitand(0xffffffffu32.saturating_shl(32 - self.prefix_len))
    }

    pub fn broadcast(&self) -> Ipv4Addr {
        self.addr.bitor(0xffffffffu32.saturating_shr(self.prefix_len))
    }

    pub fn supernet(&self) -> Ipv4Net {
        Ipv4Net::new(self.addr.clone(), self.prefix_len - 1)
    }

    // TODO: Should this be an iterator?
    pub fn subnets(&self, new_prefix_len: u8) -> Vec<Ipv4Net> {
        // TODO: Need to implement a proper error handling scheme.
        if new_prefix_len <= self.prefix_len { return Vec::new(); }
        let new_prefix_len = if new_prefix_len > 32 { 32 } else { new_prefix_len };

        let mut network = self.network();
        let broadcast = self.broadcast();
        let step = 2u32.pow(32 - new_prefix_len as u32);
        let mut res: Vec<Ipv4Net> = Vec::new();

        while network <= broadcast {
            res.push(Ipv4Net::new(network, new_prefix_len));
            network = network.saturating_add(step);
        }
        res
    }

    // TODO: Contains should also work for IP addresses.
    pub fn contains(&self, other: &Ipv4Net) -> bool {
        self.network() <= other.network() && self.broadcast() >= other.broadcast()
    }

    pub fn sibling_of(&self, other: &Ipv4Net) -> bool {
        self.prefix_len == other.prefix_len && self.supernet().contains(other)
    }
}

// The u128 type would be nice here, but it's not marked stable yet. We
// use an emulated u128 type defined in emu128.rs to make life simpler.
impl Ipv6Net {
    // TODO: Should new() precompute the netmask, hostmask, network, and
    // broadcast addresses and store these to save recomputing everytime
    // the methods are called?
    pub fn new(ip: Ipv6Addr, prefix_len: u8) -> Ipv6Net {
        // TODO: Need to implement a proper error handling scheme.
        let prefix_len = if prefix_len > 128 { 128 } else { prefix_len };
        Ipv6Net { addr: ip, prefix_len: prefix_len }
    }

    pub fn netmask(&self) -> Ipv6Addr {
        ipv6_addr_from_emu128(emu128::max_value().saturating_shl(128 - self.prefix_len))
    }

    pub fn hostmask(&self) -> Ipv6Addr {
        ipv6_addr_from_emu128(emu128::max_value().saturating_shr(self.prefix_len))
    }

    pub fn network(&self) -> Ipv6Addr {
        self.addr.bitand(emu128::max_value().saturating_shl(128 - self.prefix_len))
    }

    // TODO: Technically there is no such thing as a broadcast address
    // in IPv6. Perhaps we should change these method names to first()
    // and last() or start() and end().
    pub fn broadcast(&self) -> Ipv6Addr {
        self.addr.bitor(emu128::max_value().saturating_shr(self.prefix_len))
    }

    pub fn supernet(&self) -> Ipv6Net {
        Ipv6Net::new(self.addr.clone(), self.prefix_len - 1)
    }

    // TODO: Is there a nicer way to do this? Using u128 types would be
    // nice but they're not marked as stable yet. Should this return an
    // iterator instead of a vector?
    pub fn subnets(&self, new_prefix_len: u8) -> Vec<Ipv6Net> {
        // TODO: Need to implement a proper error handling scheme.
        if new_prefix_len <= self.prefix_len { return Vec::new(); }
        let new_prefix_len = if new_prefix_len > 128 { 128 } else { new_prefix_len };

        let mut network = ipv6_addr_into_emu128(self.network());
        let broadcast = ipv6_addr_into_emu128(self.broadcast());

        let step = if new_prefix_len <= 64 {
            emu128 { hi: 1 << (64 - new_prefix_len), lo: 0 }
        }
        else {
            emu128 { hi: 0, lo: 1 << (128 - new_prefix_len) }
        };
        
        let mut res: Vec<Ipv6Net> = Vec::new();
        
        while network <= broadcast {
            res.push(Ipv6Net::new(ipv6_addr_from_emu128(network), new_prefix_len));
            network = network.saturating_add(step);
        }
        res
    }

    // TODO: Contains should also work for IP addresses.
    pub fn contains(&self, other: &Ipv6Net) -> bool {
        self.network() <= other.network() && self.broadcast() >= other.broadcast()
    }

    pub fn sibling_of(&self, other: &Ipv6Net) -> bool {
        self.prefix_len == other.prefix_len && self.supernet().contains(other)
    }
}

impl fmt::Display for IpNet {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            IpNet::V4(ref a) => a.fmt(fmt),
            IpNet::V6(ref a) => a.fmt(fmt),
        }
    }
}

impl fmt::Display for Ipv4Net {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{}/{}", self.addr, self.prefix_len)
    }
}

impl fmt::Display for Ipv6Net {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{}/{}", self.addr, self.prefix_len)
    }
}

// Generic function for merging any intervals.
fn merge_intervals<T: Copy + Ord>(mut intervals: Vec<(T, T)>) -> Vec<(T, T)> {
    // Sort by (end, start) because we work backwards below.
    intervals.sort_by_key(|k| (k.1, k.0)); 

    // Work backwards from the end of the list to the front.
    let mut i = intervals.len()-1;
    while i >= 1 {
        let (l_start, l_end) = intervals[i-1];
        let (r_start, r_end) = intervals[i];
        
        if r_start <= l_end {
            intervals[i-1].0 = min(l_start, r_start);
            intervals[i-1].1 = max(l_end, r_end);
            intervals.remove(i);
        }
        i -= 1;
    }
    intervals
}

impl IpNet {
    //pub fn aggregate(networks: &Vec<IpNet>) -> Vec<IpNet> {
    //    Vec::new()
    //}
}

impl Ipv4Net {
    // TODO: Will be interesting to experiment with Range types.
    fn interval(&self) -> (u32, u32) {
        (
            u32::from(self.network()),
            u32::from(self.broadcast()).saturating_add(1),
        )
    }

    // EXPERIMENT
    fn next(&self) -> Ipv4Net {
        Ipv4Net::new(Ipv4Addr::from(u32::from(self.network()) + 1u32 << self.prefix_len), self.prefix_len)
    }
    // EXPERIMENT
    fn interval2(&self) -> (Ipv4Addr, Ipv4Addr) {
        (self.network(), self.next().network())
    }

    // TODO: Should this return an iterator instead?
    pub fn aggregate(networks: &Vec<Ipv4Net>) -> Vec<Ipv4Net> {
        let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect();
        
        intervals = merge_intervals(intervals);
        let mut res: Vec<Ipv4Net> = Vec::new();

        for (start, end) in intervals {
            let mut start = start;
            while start < end {
                let range = end - start;
                let num_bits = 32u32.saturating_sub(range.leading_zeros()).saturating_sub(1);
                let prefix_len = 32 - min(num_bits, start.trailing_zeros());
                res.push(Ipv4Net::new(Ipv4Addr::from(start), prefix_len as u8));
                let step = 2u32.pow(32 - prefix_len);
                start = start.saturating_add(step);
            }
        }
        res
    }
}

impl Ipv6Net {
    // TODO: Will be interesting to experiment with Range types.
    fn interval(&self) -> (emu128, emu128) {
        (
            ipv6_addr_into_emu128(self.network()),
            ipv6_addr_into_emu128(self.broadcast()).saturating_add(emu128 { hi: 0, lo: 1 }),
        )
    }

    // TODO: Should this return an iterator instead?
    pub fn aggregate(networks: &Vec<Ipv6Net>) -> Vec<Ipv6Net> {
        let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect();

        intervals = merge_intervals(intervals);
        let mut res: Vec<Ipv6Net> = Vec::new();

        // Break up merged intervals into the largest subnets that will fit.
        for (start, end) in intervals {
            let mut start = start;
            while start < end {
                let range = end.saturating_sub(start);
                let num_bits = 128u32.saturating_sub(range.leading_zeros()).saturating_sub(1);
                let prefix_len = 128 - min(num_bits, start.trailing_zeros());
                res.push(Ipv6Net::new(ipv6_addr_from_emu128(start), prefix_len as u8));
                let step = if prefix_len <= 64 { emu128 { hi: 1 << (64 - prefix_len), lo: 0 } }
                else { emu128 { hi: 0, lo: 1 << (128 - prefix_len) } };
                start = start.saturating_add(step);
            }
        }
        res
    }
}