1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
use std;
use std::fmt;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};

#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub enum IpNet {
    V4(Ipv4Net),
    V6(Ipv6Net),
}

#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub struct Ipv4Net {
    addr: Ipv4Addr,
    prefix_len: u8,
}

#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub struct Ipv6Net {
    addr: Ipv6Addr,
    prefix_len: u8,
}

// For the time being deref method calls to the IpAddr implemenations.

/*impl std::ops::Deref for IpNet {
    type Target = IpAddr;
    fn deref(&self) -> &Self::Target {
        match *self {
            IpNet::V4(ref a) => a.addr,
            IpNet::V6(ref a) => a.addr,
        }
    }
}*/

impl std::ops::Deref for Ipv4Net {
    type Target = Ipv4Addr;
    fn deref(&self) -> &Self::Target {
        &self.addr
    }
}

impl std::ops::Deref for Ipv6Net {
    type Target = Ipv6Addr;
    fn deref(&self) -> &Self::Target {
        &self.addr
    }
}

impl IpNet {
    pub fn supernet(&self) -> IpNet {
        match *self {
            IpNet::V4(ref a) => IpNet::V4(a.supernet()),
            IpNet::V6(ref a) => IpNet::V6(a.supernet()),
        }
    }

    pub fn contains(&self, other: &IpNet) -> bool {
        match (*self, *other) {
            (IpNet::V4(ref a), IpNet::V4(ref b)) => a.contains(b),
            (IpNet::V6(ref a), IpNet::V6(ref b)) => a.contains(b),
            (_, _) => false,
        }
    }

    pub fn sibling(&self, other: &IpNet) -> bool {
        match (*self, *other) {
            (IpNet::V4(ref a), IpNet::V4(ref b)) => a.sibling(b),
            (IpNet::V6(ref a), IpNet::V6(ref b)) => a.sibling(b),
            (_, _) => false,
        }
    }
}

impl Ipv4Net {
    pub fn new(ip: Ipv4Addr, prefix_len: u8) -> Ipv4Net {
        // TODO: Should error if prefix_len > 32 as prefix_len <= 32 is
        // assumed in subsequent methods.
        Ipv4Net { addr: ip, prefix_len: prefix_len, }
    }

    pub fn netmask(&self) -> Ipv4Addr {
        Ipv4Addr::from(
            // Avoid deny(exceeding_bitshifts)
            if self.prefix_len > 0 {
                0xffffffff << 32 - self.prefix_len
            }
            else {
                0x00000000
            }
        )
    }

    pub fn hostmask(&self) -> Ipv4Addr {
        Ipv4Addr::from(
            // Avoid deny(exceeding_bitshifts)
            if self.prefix_len < 32 {
                0xffffffff >> self.prefix_len
            }
            else {
                0x00000000
            } 
        )
    }

    pub fn network(&self) -> Ipv4Addr {
        // BitAnd is not implemented for Ipv4Addr.
        Ipv4Addr::from(u32::from(self.addr) & u32::from(self.netmask()))
    }

    pub fn broadcast(&self) -> Ipv4Addr {
        // BitOr is not implemented for Ipv4Addr.
        Ipv4Addr::from(u32::from(self.addr) | u32::from(self.hostmask()))
    }

    pub fn supernet(&self) -> Ipv4Net {
        Ipv4Net::new(Ipv4Addr::from(self.octets()), self.prefix_len - 1)
    }

    pub fn contains(&self, other: &Ipv4Net) -> bool {
        self.network() <= other.network() && self.broadcast() >= other.broadcast()
    }

    pub fn sibling(&self, other: &Ipv4Net) -> bool {
        self.prefix_len == other.prefix_len && self.supernet().contains(other)
    }
}

impl Ipv6Net {
    pub fn new(ip: Ipv6Addr, prefix_len: u8) -> Ipv6Net {
        // TODO: Should error if prefix_len > 128 as prefix_len <= 128
        // is assumed in subsequent methods.
        Ipv6Net { addr: ip, prefix_len: prefix_len, }
    }

    // The u128 type would be nice here, but it's not marked stable yet.
    pub fn netmask(&self) -> Ipv6Addr {
        // Avoid deny(exceeding_bitshifts)
        let a: u64 = if self.prefix_len > 0 { 0xffff_ffff_ffff_ffff << 64u8.saturating_sub(self.prefix_len) } else { 0x0 };
        let b: u64 = if self.prefix_len > 64 { 0xffff_ffff_ffff_ffff << 128 - self.prefix_len } else { 0x0 };
        
        Ipv6Addr::new(
            (a >> 48) as u16, (a >> 32) as u16, (a >> 16) as u16, a as u16,
            (b >> 48) as u16, (b >> 32) as u16, (b >> 16) as u16, b as u16
        )
    }

    // The u128 type would be nice here, but it's not marked stable yet.
    pub fn hostmask(&self) -> Ipv6Addr {
        // Avoid deny(exceeding_bitshifts)
        let a: u64 = if self.prefix_len < 64 { 0xffff_ffff_ffff_ffff >> self.prefix_len } else { 0x0 };
        let b: u64 = if self.prefix_len < 128 { 0xffff_ffff_ffff_ffff >> self.prefix_len.saturating_sub(64) } else { 0x0 };
        
        Ipv6Addr::new(
            (a >> 48) as u16, (a >> 32) as u16, (a >> 16) as u16, a as u16,
            (b >> 48) as u16, (b >> 32) as u16, (b >> 16) as u16, b as u16
        )
    }

    // The u128 type would be nice here, but it's not marked stable yet.
    pub fn network(&self) -> Ipv6Addr {
        // BitAnd is not implemented for Ipv6Addr.
        let ip = self.segments();
        let m = self.netmask().segments();

        Ipv6Addr::new(
            ip[0] & m[0], ip[1] & m[1], ip[2] & m[2], ip[3] & m[3],
            ip[4] & m[4], ip[5] & m[5], ip[6] & m[6], ip[7] & m[7]
        )
    }

    // TODO: Technically there is no such thing as a broadcast. Perhaps
    // we should change the network() and broadcast() methods to be
    // first() and last() or similar.
    // The u128 type would be nice here, but it's not marked stable yet.
    pub fn broadcast(&self) -> Ipv6Addr {
        // BitOr is not implemented for Ipv4Addr.
        let ip = self.segments();
        let m = self.hostmask().segments();

        Ipv6Addr::new(
            ip[0] | m[0], ip[1] | m[1], ip[2] | m[2], ip[3] | m[3],
            ip[4] | m[4], ip[5] | m[5], ip[6] | m[6], ip[7] | m[7]
        )
    }

    pub fn supernet(&self) -> Ipv6Net {
        Ipv6Net::new(Ipv6Addr::from(self.segments()), self.prefix_len - 1)
    }

    pub fn contains(&self, other: &Ipv6Net) -> bool {
        self.network() <= other.network() && self.broadcast() >= other.broadcast()
    }

    pub fn sibling(&self, other: &Ipv6Net) -> bool {
        self.prefix_len == other.prefix_len && self.supernet().contains(other)
    }
}

impl fmt::Display for IpNet {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            IpNet::V4(ref a) => a.fmt(fmt),
            IpNet::V6(ref a) => a.fmt(fmt),
        }
    }
}

impl fmt::Display for Ipv4Net {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{}/{}", self.addr, self.prefix_len)
    }
}

impl fmt::Display for Ipv6Net {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{}/{}", self.addr, self.prefix_len)
    }
}

#[cfg(test)]
mod tests {
    use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
    use std::option::Option::{Some, None};
    use std::str::FromStr;
    use ipnet::{IpNet, Ipv4Net, Ipv6Net};
    
    #[test]
    fn test_ipv4_net() {
        // TODO: Test the boundaries (/0, /32, /64, /128). Or iterate
        // over every bit.
        assert_eq!(
            IpNet::from_str("10.0.0.0/8").unwrap(),
            IpNet::V4(Ipv4Net { addr: Ipv4Addr::from_str("10.0.0.0").unwrap(), prefix_len: 8 })
        );
        assert_eq!(
            Ipv4Net::from_str("172.16.0.0/12").unwrap(),
            Ipv4Net { addr: Ipv4Addr::from_str("172.16.0.0").unwrap(), prefix_len: 12 }
        );
        assert_eq!(
            Ipv4Net::from_str("172.16.0.0/12").unwrap().netmask(),
            Ipv4Addr::from_str("255.240.0.0").unwrap()
        );
        assert_eq!(
            Ipv4Net::from_str("172.16.0.0/12").unwrap().hostmask(),
            Ipv4Addr::from_str("0.15.255.255").unwrap()
        );
        assert_eq!(
            Ipv4Net::from_str("172.16.0.0/12").unwrap().network(),
            Ipv4Addr::from_str("172.16.0.0").unwrap()
        );
        assert_eq!(
            Ipv4Net::from_str("172.16.0.0/12").unwrap().broadcast(),
            Ipv4Addr::from_str("172.31.255.255").unwrap()
        );
    }
}