1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
//!
//! This module contains the single trait [`IntegerCubeRoot`] and implements it for primitive
//! integer types.
//!
//! # Example
//!
//! ```
//! extern crate integer_cbrt;
//! // `use` trait to get functionality
//! use integer_cbrt::IntegerCubeRoot;
//!
//! # fn main() {
//! assert_eq!(8u8.integer_cbrt(), 2);
//! # }
//! ```
//!
//! [`IntegerCubeRoot`]: ./trait.IntegerCubeRoot.html
#![no_std]

/// A trait implementing integer cube root.
pub trait IntegerCubeRoot {
    /// Find the integer cube root.
    ///
    /// # Panics
    ///
    /// For negative numbers (`i` family) this function will panic on negative input
    fn integer_cbrt(&self) -> Self
    where
        Self: Sized,
    {
        self.integer_cbrt_checked()
            .expect("cannot calculate cube root of negative number")
    }

    /// Find the integer cube root, returning `None` if the number is negative (this can never
    /// happen for unsigned types).
    fn integer_cbrt_checked(&self) -> Option<Self>
    where
        Self: Sized;
}

impl<T: num_traits::PrimInt> IntegerCubeRoot for T {
    fn integer_cbrt_checked(&self) -> Option<Self> {
        use core::cmp::Ordering;
        match self.cmp(&T::zero()) {
            // Hopefully this will be stripped for unsigned numbers (impossible condition)
            Ordering::Less => return None,
            Ordering::Equal => return Some(T::zero()),
            _ => {}
        }

        // Taken from: https://gist.github.com/anonymous/729557, and generalized to all
        // integer primitive types.
        let one = T::one();
        let three = one + one + one;

        let num_bits = T::zero().leading_zeros();
        let mut x = *self;
        let mut result = T::zero();
        for s in (0..num_bits).step_by(3).rev() {
            result = result + result;
            let b = three * result * (result + one) + one;
            if (x >> s as usize) >= b {
                x = x - (b << s as usize);
                result = result + one;
            }
        }
        Some(result)
    }
}

#[cfg(test)]
mod tests {
    use super::IntegerCubeRoot;
    use core::{i8, u16, u64, u8};

    macro_rules! gen_tests {
        ($($type:ty => $fn_name:ident),*) => {
            $(
                #[test]
                fn $fn_name() {
                    // https://en.wikipedia.org/wiki/Cube_root#Numerical_methods
                    let newton_raphson = |val, cube| 1./3. * (2. * val + (cube / (val as $type * val as $type)) as f64);
                    let max_cbrt = {
                        let cube = <$type>::max_value();
                        let mut value = (cube as f64).cbrt();
                        for _ in 0..2 {
                            value = newton_raphson(value, cube);
                        }
                        let mut value = value as $type;
                        // make sure we are below the max value (this is how integer cube
                        // root works)
                        if value.checked_mul(value*value).is_none() {
                            value -= 1;
                        }
                        value
                    };
                    let tests: [($type, $type); 10] = [
                        (0, 0),
                        (1, 1),
                        (2, 1),
                        (3, 1),
                        (4, 1),
                        (8, 2),
                        (64, 4),
                        (63, 3),
                        (<$type>::max_value(), max_cbrt),
                        (<$type>::max_value() - 1, max_cbrt),
                    ];
                    for &(in_, out) in tests.iter() {
                        assert_eq!(in_.integer_cbrt(), out, "in {}", in_);
                    }
                }
            )*
        };
    }

    gen_tests! {
        i8 => i8_test,
        u8 => u8_test,
        i16 => i16_test,
        u16 => u16_test,
        i32 => i32_test,
        u32 => u32_test,
        i64 => i64_test,
        u64 => u64_test,
        u128 => u128_test,
        isize => isize_test,
        usize => usize_test
    }

    #[test]
    fn i128_test() {
        let tests: [(i128, i128); 10] = [
            (0, 0),
            (1, 1),
            (2, 1),
            (3, 1),
            (4, 1),
            (64, 4),
            (63, 3),
            (23_985_346_875, 2_883),
            (24_958_973_498_745, 29_224),
            (i128::max_value(), 5_541_191_377_756),
        ];
        for &(in_, out) in tests.iter() {
            assert_eq!(in_.integer_cbrt(), out, "in {}", in_);
        }
    }
}