
Anonymous credentials with type-3 revocation

Dmitry Khovratovich, Michael Lodder

9 February 2018, version 0.4

1 Introduction

1.1 Concept

The concept of anonymous credentials allows users to prove that their identity satisfies certain properties in an
uncorrelated way without revealing other identity details. The properties can be raw identity attributes such
as the birth date or the address, or a more sophisticated predicates such as “A is older than 20 years old”.

We assume three parties: Issuer, Prover, Verifier. From the functional perspective, the Issuer gives a
credential C based on identity X, which asserts certain properties P about X, to the Prover. The credential
consists of attributes represented by integers m1,m2, . . . ,ml. The Prover then presents (P, C) to the Verifier,
which can verify that the Issuer has asserted that Prover’s identity has property P.

For compliance, another party Inspector is often deployed. Inspector is able to deanonymize the Prover
given the transcript of his interaction with the Verifier.

1.2 Properties

Credentials are unforgeable in the sense that no one can fool the Verifier with a credential not prepared by the
Issuer.

We say that credentials are unlinkable if it is impossible to correlate the presented credential across multiple
presentations. This is implemented by the Prover proving with a zero-knowledge proof that he has a credential
rather than showing the credential.

Unlinkability can be simulated by the Issuer generating a sufficient number of ordinary unrelated credentials.
Also unlinkability can be turned off to make credentials one-time use so that second and later presentations are
detected.

Credentials are delegatable if Prover A can delegate a credential C to Prover B with certain attributes X,
so that Verifier would not learn the identity of A if B presents Y to him. The delegation may continue further
thus creating a credential chain.

1.3 Pseudonyms

Typically a credential is bound to a certain pseudonym nym. It is supposed that Prover has been registered
as nym at the Issuer, and communicated (part of) his identity X to him. After that the Issuer can issue a
credential that couples nym and X.

The Prover may have a pseudonym at the Verifier, but not necessarily. If there is no pseudonym then
the Verifier provides the service to users who did not register. If the pseudonym nymV is required, it can be
generated from a link secret m1 together with nym in a way that nym can not be linked to nymV . However,
Prover is supposed to prove that the credential presented was issued to a pseudonym derived from the same
link secret as used to produce nymV .

An identity owner also can create a policy address I that is used for managing agent proving authorization.
The address are tied to credentials issued to Provers such that agents cannot use these credentials without
authorization.

2 Generic notation

Attribute m is a la-bit unsigned integer1.

1Technically it is possible to support credentials with different la, but in Sovrin for simplicity it is set la = 256.

1

3 Protocol Overview

The described protocol supports anonymous credentials given to multiple holders by various issuers, which are
presented to various relying parties.

Various types of anonymous credentials can be supported. In this section, the combination of CL-based
credentials [?] and pairing-based revocation [?] is described.

The simplest credential lifecycle with one credential, single Issuer, Holder, and Relying Party is as follows:

1. Issuer determines a credential schema S: the type of cryptographic signatures used to sign the credentials,
the number l of attributes in a credential, the indices Ah ⊂ {1, 2, . . . , l} of hidden attributes, the public
key Pk, the non-revocation credential attribute number lr and non-revocation public key Pr (Section 4).
Then he publishes it on the ledger and announces the attribute semantics.

2. Holder retrieves the credential schema from the ledger and sets the hidden attributes.

3. Holder requests a credential from Issuer. He sends hidden attributes in a blinded form to Issuer and agrees
on the values of known attributes Ak = {1, 2, . . . , l} \Ah.

4. Issuer returns a credential pair (Cp, CNR) to Holder. The first credential contains the requested l at-
tributes. The second credential asserts the non-revocation status of the first one. Issuer publishes the
non-revoked status of the credential on the ledger.

5. Holder approaches Relying Party. Relying Party sends the Proof Request E to Holder. The Proof Request
contains the credential schema SE and disclosure predicates D. The predicates for attribute m and value
V can be of form m = V , m < V , or m > V . Some attributes may be asserted to be the same: mi = mj .

6. Holder checks that the credential pair he holds satisfy the schema SE . He retrieves the non-revocation
witness from the ledger.

7. Holder creates a proof P that he has a non-revoked credential satisfying the proof request E and sends it
to Relying Party.

8. Relying Party verifies the proof.

If there are multiple Issuers, the Prover obtains credentials from them independently. To allow credential
chaining, Issuers reserve one attribute (usually m1) for a secret value hidden by Holder. Holder is supposed
then to set it to the same value in all credentials, whereas Relying Parties require them to be equal along all
credentials. A proof request should specify then a list of schemas that credentials should satisfy in certain order.

4 Schema preparation

Credentials should have limited use to only authorized Prover entities called agents. Agents can prove autho-
rization to use a credential by including a policy address I in primary credentials as attribute m3.

4.1 Attributes

Issuer defines the primary credential schema S with l attributes m1,m2, . . . ,ml and the set of hidden attributes
Ah ⊂ {1, 2, . . . , l}. In Sovrin, m1 is reserved for the link secret of the Holder, m2 is reserved for the context –
the enumerator for the provers, m3 is reserved for the policy address I. By default, {1, 3} ⊂ Ah whereas 2 /∈ Ah.

Issuer defines the non-revocation credential with 2 attributes m1,m2. In Sovrin, Ah = {1} and m1 is reserved
for the link secret of the Holder, m2 is reserved for the context – the enumerator for the provers.

4.2 Primary Credential Cryptographic Setup

In Sovrin, Issuers use CL-signatures [?] for primary credentials, although other signature types will be supported
too.

For the CL-signatures Issuer generates:

1. Random 1024-bit primes p′, q′ such that p ← 2p′ + 1 and q ← 2q′ + 1 are primes too. Then compute
n← pq.

2. A random quadratic residue S modulo n;

3. Random xZ , xR1 , . . . , xRl
∈ [2; p′q′ − 1]

2

Issuer computes

Z ← SxZ (mod n); {Ri ← SxRi (mod n)}1≤i≤l; (1)

The issuer’s public key is Pk = (n, S, Z, {Ri}1≤i≤l) and the private key is sk = (p, q, xZ , xR1 , . . . , xRl
).

4.3 Optional: Setup Correctness Proof

1. Issuer generates random x̃Z , x̃R1
, . . . , x̃Rl

∈ [2; p′q′ − 1];

2. Computes

Z̃ ← Sx̃Z (mod n); {R̃i ← Sx̃Ri (mod n)}1≤i≤l; (2)

c← HI(Z||Z̃||{Ri, R̃i}i≤i≤l); (3)

x̂Z ← x̃Z + cxZ ; {x̂Ri
← x̃Ri

+ cxRi
}1≤i≤l; (4)

Here HI is the Issuer-defined hash function, by default SHA-256.

3. Proof PI of correctness is (c, x̂Z , {x̂Ri
}1≤i≤l)

4.4 Non-revocation Credential Cryptographic Setup

In Sovrin, Issuers use CKS accumulator and signatures [?] to track revocation status of primary credentials,
although other signature types will be supported too. Each primary credential is given an index from 1 to L.

The CKS accumulator is used to track revoked primary credentials, or equivalently, their indices. The
accumulator contains up to L indices of credentials. If Issuer has to issue more credentials, another accumulator
is prepared, and so on. Each accumulator A has an identifier IA.

Issuer chooses

• Groups G1,G2,GT of prime order q;

• Type-3 pairing operation e : G1 ×G2 → GT .

• Generators: g for G1, g′ for G2.

Issuer:

1. Generates

1.1. Random h, h0, h1, h2, h̃ ∈ G1;

1.2. Random u, ĥ ∈ G2;

1.3. Random sk, x (mod q).

2. Computes

pk ← gsk; y ← ĥx.

The revocation public key is Pr = (h, h0, h1, h2, h̃, ĥ, u, pk, y) and the secret key is (x, sk).

4.4.1 New Accumulator Setup

To create a new accumulator A, Issuer:

1. Generates random γ (mod q).

2. Computes

2.1. g1, g2, . . . , gL, gL+2, . . . , g2L where gi = gγ
i

.

2.2. g′1, g
′
2, . . . , g

′
L, g
′
L+2, . . . , g

′
2L where g′i = g′γ

i

.

2.3. z = (e(g, g′))γ
L+1

.

3. Set V ← ∅, acc← 1.

The accumulator public key is Pa = (z) and secret key is (γ).
Issuer publishes (Pa, V) on the ledger. The accumulator identifier is IDa = z.

3

5 Issuance of Credentials

5.1 Holder Setup

Holder:

• Loads credential schema S.

• Sets hidden attributes {mi}i∈Ah
.

• Establishes a connection with Issuer and gets nonce n0 either from Issuer or as a precomputed value.
Holder is known to Issuer with identifier H.

Holder prepares data for primary credential:

1. Generate random 2128-bit v′.

2. Generate random 593-bit {m̃i}i∈Ah
, and random 673-bit ṽ′.

3. Compute taking S,Z,Ri from Pk:

U ← (Sv
′
)
∏
i∈Ac

Rmi
i (mod n); (5)

4. Compute

Ũ ← (Sṽ
′
)
∏
i∈Ac

Rm̃i
i (mod n); (6)

c←H(U ||Ũ ||n0); v̂′ ← ṽ′ + cv′; (7)

{m̂i ← m̃i + cmi}i∈Ah
; (8)

5. Generate random 80-bit nonce n1

6. Send {U, c, v̂′, {m̂i}i∈Ah
, n1} to the Issuer.

Holder prepares for non-revocation credential:

1. Load Issuer’s revocation key PR and generate random s′R mod q.

2. Compute UR ← h
s′R
2 taking h2 from PR.

3. Send UR to the Issuer.

5.1.1 Optional: Issuer Proof of Setup Correctness

To verify the proof Pi of correctness, Holder computes

Ẑ ← Z−cSx̂Z (mod n); {R̂i ← R−ci Sx̂Ri (mod n)}1≤i≤l;

and verifies
c = HI(Z||Ẑ||{Ri, R̂i}1≤i≤l)

.

5.2 Primary Credential Issuance

Issuer verifies the correctness of Holder’s input:

1. Compute

Û ← (U−c)
∏
i∈Ah

Rm̂i
i (Sv̂

′
) (mod n); (9)

2. Verify c = H(U ||Û ||n0)

3. Verify that v̂′ is a 673-bit number, {m̂i, r̂i}i∈Ac are 594-bit numbers.

4

Issuer prepare the credential:

1. Assigns index i < L to Holder, which is one of not yet taken indices for the Issuer’s current accumulator
A. Compute m2 ← H(i||H) and store information about Holder and the value i in a local database.

2. Set, possibly in agreement with Holder, the values of disclosed attributes, i.e. with indices from Ak.

3. Generate random 2724-bit number v′′ with most significant bit equal 1 and random prime e such that

2596 ≤ e ≤ 2596 + 2119. (10)

4. Compute

Q← Z

USv′′
∏
i∈Ak

Rmi
i (mod n)

; (11)

A← Qe
−1 (mod p′q′) (mod n); (12)

5. Generate random r < p′q′;

6. Compute

Â← Qr (mod n); (13)

c′ ← H(Q||A||Â||n1); (14)

se ← r − c′e−1 (mod p′q′); (15)

7. Send the primary pre-credential ({mi}i∈Ak
, A, e, v′′, se, c

′) to the Holder.

5.3 Non-revocation Credential Issuance

Issuer:

1. Generate random numbers s′′, c mod q.

2. Take m2 from the primary credential he is preparing for Holder.

3. Take A as the accumulator value for which index i was taken. Retrieve current set of non-revoked indices
V .

4. Compute:

σ ←
(
h0h

m2
1 · U · gi · hs

′′

2

) 1
x+c

; w ←
∏
j∈V

g′L+1−j+i; (16)

σi ← g′1/(sk+γi); ui ← uγ
i

; (17)

A← A · g′L+1−i; V ← V ∪ {i}; (18)

witi ← {σi, ui, gi, w, V }. (19)

5. Send the non-revocation pre-credential (IA, σ, c, s
′′,witi, gi, g

′
i, i) to Holder.

6. Publish updated V,A on the ledger.

5.4 Storing Credentials

Holder works with the primary pre-credential :

1. Compute v ← v′ + v′′.

2. Verify e is prime and satisfies Eq. (10).

3. Compute

Q← Z

Sv
∏
i∈Cs

Rmi
i

(mod n); (20)

5

4. Verify Q = Ae (mod n)

5. Compute 2

Â← Ac
′+se·e (mod n). (21)

6. Verify c′ = H(Q||A||Â||n2).

7. Store primary credential Cp = ({mi}i∈Cs , A, e, v).

Holder takes the non-revocation pre-credential (IA, σ, c, s
′′,witi, gi, g

′
i, i) computes sR ← s′ + s′′ and stores the

non-revocation credential CNR ← (IA, σ, c, s,witi, gi, g
′
i, i).

6 Revocation

Issuer identifies a credential to be revoked in the database and retrieves its index i, the accumulator value A,
and valid index set V . Then he proceeds:

1. Set V ← V \ {i};

2. Compute A← A/g′L+1−i.

3. Publish {V,A}.

7 Presentation

7.1 Proof Request

Verifier sends a proof request, where it specifies the ordered set of d credential schemas {S1,S2, . . . ,Sd}, so that
the Holder should provide a set of d credential pairs (Cp, CNR) that correspond to these schemas.

Let credentials in these schemas contain X attributes in total. Suppose that the request makes to open
x1 attributes, makes to prove x2 equalities mi = mj (from possibly distinct schemas) and makes to prove x3

predicates of form mi >≤≥< z. Then effectively X−x1 attributes are unknown (denote them Ah), which form
x4 = (X − x1 − x2) equivalence classes. Let φ map Ah to {1, 2, . . . , x4} according to this equivalence. Let Av
denote the set of indices of x1 attributes that are disclosed.

The proof request also specifies Ah, φ,Av and the set D of predicates. Along with a proof request, Verifier
also generates and sends 80-bit nonce n1.

7.2 Proof Preparation

Holder prepares all credential pairs (Cp, CNR) to submit:

1. Generates x4 random 592-bit values ỹ1, ỹ2, . . . , ỹx4
and set m̃j ← ỹφ(j) for j ∈ Ah.

2. Create empty sets T and C.

3. For all credential pairs (Cp, CNR) executes Section 7.2.

4. Executes Section 7.2.1 once.

5. For all credential pairs (Cp, CNR) executes Section 7.2.2.

6. Executes Section 7.2.2 once.

Verifier:

1. For all credential pairs (Cp, CNR) executes Section 7.3.

2. Executes Section 7.3.3 once.

Non-revocation proof Prover:

1. Load Issuer’s public revocation key p = (h, h1, h2, h̃, ĥ, u, pk, y).

2. Load the non-revocation credential CNR ← (IA, σ, c, s,witi, gi, g
′
i, i);

2We have removed factor Sv′se here from computing of Â as it seems to be a typo in the Idemix spec.

6

3. Obtain recent V, acc (from Verifier, Sovrin link, or elsewhere).

4. Update CNR:

w ← w ·
∏
j∈V \Vold

g′L+1−j+i∏
j∈Vold\V g

′
L+1−j+i

;

Vold ← V.

Here Vold is taken from witi and updated there.

5. Select random ρ, ρ′, r, r′, r′′, r′′′, o, o′ mod q;

6. Compute

E ← hρh̃o D ← grh̃o
′
; (22)

A← σh̃ρ G ← gih̃
r; (23)

W ← wĥr
′

S ← σiĥ
r′′ (24)

U ← uiĥ
r′′′ (25)

and adds these values to C.

7. Compute

m← ρ · c; t← o · c; (26)

m′ ← r · r′′; t′ ← o′ · r′′; (27)

8. Generate random ρ̃, õ, õ′, c̃, m̃, m̃′, t̃, t̃′, m̃2, s̃, r̃, r̃′, r̃′′, r̃′′′,modq.

9. Compute

T1 ← hρ̃h̃õ T2 ← E c̃h−m̃h̃−t̃ (28)

T3 ← e(A, ĥ)c̃ · e(h̃, ĥ)r̃ · e(h̃, y)−ρ̃ · e(h̃, ĥ)−m̃ · e(h1, ĥ)−m̃2 · e(h2, ĥ)−s̃ (29)

T4 ← e(h̃, acc)r̃ · e(1/g, ĥ)r̃
′

T5 ← gr̃h̃õ
′

(30)

T6 ← Dr̃′′g−m̃
′
h̃−t̃

′
T7 ← e(pk · G, ĥ)r̃

′′ · e(h̃, ĥ)−m̃
′ · e(h̃,S)r̃ (31)

T8 ← e(h̃, u)r̃ · e(1/g, ĥ)r̃
′′′

(32)

and add these values to T .

Validity proof

Prover:

1. Generate a random 592-bit number m̃j for each j ∈ Ar.

2. For each credential Cp = ({mj}, A, e, v) and Issuer’s public key pkI :

2.1. Choose random 2128-bit r.

2.2. Take n, S from pkI compute

A′ ← ASr (mod n) and v′ ← v − e · r as integers; (33)

and add to C.
2.3. Compute e′ ← e− 2596.

2.4. Generate random 456-bit number ẽ.

2.5. Generate random 3060-bit number ṽ.

2.6. Compute

T ← (A′)ẽ

 ∏
j∈Ar

R
m̃j

j

 (Sṽ) (mod n) (34)

and add to T .

7

3. Load Z, S from issuer’s public key.

4. For each predicate p where the operator ∗ is one of >,≥, <,≤.

4.1. Calculate ∆ such that:

∆←


zj −mj ; if ∗ ≡ ≤
zj −mj − 1; if ∗ ≡ <

mj − zj ; if ∗ ≡ ≥
mj − zj − 1; if ∗ ≡ >

4.2. Find (possibly by exhaustive search) u1, u2, u3, u4 such that:

∆ = (u1)2 + (u2)2 + (u3)2 + (u4)2 (35)

4.3. Generate random 2128-bit numbers r1, r2, r3, r4, r∆.

4.4. Compute

{Ti ← ZuiSri (mod n)}1≤i≤4; (36)

T∆ ← Z∆Sr∆ (mod n); (37)

and add these values to C in the order T1, T2, T3, T4, T∆.

4.5. Generate random 592-bit numbers ũ1, ũ2, ũ3, ũ4.

4.6. Generate random 672-bit numbers r̃1, r̃2, r̃3, r̃4, r̃∆.

4.7. Generate random 2787-bit number α̃

4.8. Compute

{Ti ← Z ũiS r̃i (mod n)}1≤i≤4; (38)

T∆ ← Zm̃jS r̃∆ (mod n); (39)

Q← (Sα̃)

4∏
i=1

T ũi
i (mod n); (40)

and add these values to T in the order T1, T2, T3, T4, T∆, Q.

7.2.1 Hashing

Prover computes challenge hash

cH ← H(T , C, n1); (41)

and sends cH to Verifier.

7.2.2 Final preparation

Prover:

1. For non-revocation credential CNR compute:

ρ̂← ρ̃− cHρ mod q ô← õ− cH · o mod q

ĉ← c̃− cH · c mod q ô′ ← õ′ − cH · o′ mod q

m̂← m̃− cHm mod q m̂′ ← m̃′ − cHm′ mod q

t̂← t̃− cHt mod q t̂′ ← t̃′ − cHt′ mod q

m̂2 ← m̃2 − cHm2 mod q ŝ← s̃− cHs mod q

r̂ ← r̃ − cHr mod q r̂′ ← r̃′ − cHr′ mod q

r̂′′ ← r̃′′ − cHr′′ mod q r̂′′′ ← r̃′′′ − cHr′′′ mod q.

and add them to X .

8

2. For primary credential Cp compute:

ê← ẽ+ cHe
′; (42)

v̂ ← ṽ + cHv
′; (43)

{m̂j ← m̃j + cHmj}j∈Ar ; (44)

The values PrC = (ê, v̂, {m̂j}j∈Ar
, A′) are the sub-proof for credential Cp.

3. For each predicate p compute:

{ûi ← ũi + cHui}1≤i≤4; (45)

{r̂i ← r̃i + cHri}1≤i≤4; (46)

r̂∆ ← r̃∆ + cHr∆; (47)

α̂← α̃+ cH(r∆ − u1r1 − u2r2 − u3r3 − u4r4); (48)

The values Prp = ({ûi}, {r̂i}, r̂∆, α̂, m̂j) are the sub-proof for predicate p.

7.2.3 Sending

Prover sends (c,X , {PrC}, {Prp}, C) to the Verifier.

7.3 Verification

For the credential pair (Cp, CNR), Verifier retrieves relevant variables from X , {PrC}, {Prp}, C.

7.3.1 Non-revocation check

Verifier computes

T̂1 ← EcH · hρ̂ · h̃ô T̂2 ← E ĉ · h−m̂ · h̃−t̂ (49)

T̂3 ←

(
e(h0G, ĥ)

e(A, y)

)cH
· e(A, ĥ)ĉ · e(h̃, ĥ)r̂ · e(h̃, y)−ρ̂ · e(h̃, ĥ)−m̂ · e(h1, ĥ)−m̂2 · e(h2, ĥ)−ŝ (50)

T̂4 ←
(
e(G, acc)

e(g,W)z

)cH
· e(h̃, acc)r̂ · e(1/g, ĥ)r̂

′
T̂5 ← DcH · gr̂h̃ô′ (51)

T̂6 ← Dr̂′′ · g−m̂′ h̃−t̂′ T̂7 ←
(
e(pk · G,S)

e(g, g′)

)cH
· e(pk · G, ĥ)r̂

′′ · e(h̃, ĥ)−m̂
′ · e(h̃,S)r̂

(52)

T̂8 ←
(
e(G, u)

e(g,U)

)cH
· e(h̃, u)r̂ · e(1/g, ĥ)r̂

′′′
(53)

and adds these values to T̂ .

7.3.2 Validity

Verifier uses all Issuer public key pkI involved into the credential generation and the received (c, ê, v̂, {m̂j}, A′).
He also uses revealed {mj}j∈Ar . He initiates T̂ as empty set.

1. For each credential Cp, take each sub-proof PrC and compute

T̂ ←

 Z(∏
j∈Ar

Rj
mj

)
(A′)2596

−c (A′)ê

 ∏
j∈(Ar̃)

Rj
m̂j

 (Sv̂) (mod n). (54)

Add T̂ to T̂ .

2. For each predicate p:

9

2.1. Using Prp and C compute

{T̂i ← T−ci Z ûiS r̂i (mod n)}1≤i≤4; (55)

T̂∆ ← (T∆Z
zj)
−c
Zm̂jS r̂∆ (mod n); (56)

Q̂← (T−c∆)

4∏
i=1

T ûi
i (Sα̂) (mod n), (57)

and add these values to T̂ in the order T̂1, T̂2, T̂3, T̂4, T̂∆, Q̂.

7.3.3 Final hashing

1. Verifier computes
ĉH ← H(T̂ , C, n1).

2. If c = ĉ output VERIFIED else FAIL.

8 Changelog

8.1 9 Feb 2018 (version 0.4)

Formatting and updates for committed attributes

8.2 7 Feb 2018 (version 0.3)

Type-3-pairing-based revocation added.

8.3 7 Feb 2018 (version 0.21)

• c changed to −c in Section 5, item 1.0.1.

• Factor Sv
′se is removed from item 3.2.0.

8.4 13 July 2017

Added:

• Proof of correctness for Issuer’s setup in Section 4;

• Verification of correctness of setup: steps 1.0.1, 1.0.2;

• Proof of correctness for Prover’s blinded attributes: steps 1.3.1, 1.3.2, 1.4;

• Verification Prover’s proof of correctness: steps 2.0.1, 2.0.2;

• Issuer sends all mi in step 2.4.

• Proof of correctness for Issuer’s signature: steps 2.2.1, 2.2.2, 2.2.3.

• Verification of correctness of signature: steps 3.1.0, 3.1.1, 3.1.2, 3.2.0, 3.2.1.

10

	Introduction
	Concept
	Properties
	Pseudonyms

	Generic notation
	Protocol Overview
	Schema preparation
	Attributes
	Primary Credential Cryptographic Setup
	Optional: Setup Correctness Proof
	Non-revocation Credential Cryptographic Setup
	New Accumulator Setup

	Issuance of Credentials
	Holder Setup
	Optional: Issuer Proof of Setup Correctness

	Primary Credential Issuance
	Non-revocation Credential Issuance
	Storing Credentials

	Revocation
	Presentation
	Proof Request
	Proof Preparation
	Hashing
	Final preparation
	Sending

	Verification
	Non-revocation check
	Validity
	Final hashing

	Changelog
	9 Feb 2018 (version 0.4)
	7 Feb 2018 (version 0.3)
	7 Feb 2018 (version 0.21)
	13 July 2017

