1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
//!
//! Respository of some indexing-implemented algorithms so we can dissect them
//! and their codegen.
//!
//!

use std::fmt::{Debug};
use std::cmp::{self, Ordering};
use std::mem::swap;

use super::indices;

/// Convenience trait -- debugging
///
/// NOTE: Not used anymore
#[deprecated(note = "Unused item.")]
pub trait Data : Ord + Debug { }
#[allow(deprecated)]
impl<T: Ord + Debug> Data for T { }


// for debugging -- like println during debugging
#[cfg(debug_assertions)]
macro_rules! puts {
    ($($t:tt)*) => {
        println!($($t)*)
    }
}

#[cfg(not(debug_assertions))]
macro_rules! puts {
    ($($t:tt)*) => {
    }
}

/// Simple quicksort implemented using `indexing`,
pub fn quicksort<T: Ord>(v: &mut [T]) {
    indices(v, |mut v, range| {
        if let Ok(range) = range.nonempty() {
            // Fall back to insertion sort for short sections
            if range.len() <= 16 {
                insertion_sort_ranges(&mut v[..], |x, y| x < y);
                return;
            }

            let (l, m, r) = (range.first(), range.upper_middle(), range.last());
            // return, if the range is too short to sort
            if r == l {
                return;
            }
            // simple pivot
            // let pivot = m;
            //
            // smart pivot -- use median of three
            let mut pivot = if v[l] <= v[m] && v[m] <= v[r] {
                m
            } else if v[m] <= v[l] && v[l] <= v[r] {
                l
            } else {
                r
            };

            // partition
            // I think this is similar to Hoare’s version, wikipedia
            let mut scan = range;
            'main: loop {
                if v[scan.first()] > v[pivot] {
                    loop {
                        if v[scan.last()] <= v[pivot] {
                            v.swap(scan.first(), scan.last());
                            if scan.last() == pivot {
                                pivot = scan.first();
                            }
                            break;
                        }
                        if !scan.advance_back() {
                            break 'main;
                        }
                    }
                }
                if !scan.advance() {
                    v.swap(pivot, scan.first());
                    break;
                }
            }

            // ok split at pivot location and recurse
            let (a, b) = v.split_at(scan.first());
            //puts!("a={:?}, pivot={:?}, b={:?}", &v[a], &v[scan.first()], &v[b]);
            quicksort(&mut v[a]);
            quicksort(&mut v[b]);
        }
    });
}

/// quicksort implemented using regular bounds checked indexing
pub fn quicksort_bounds<T: Ord>(v: &mut [T]) {
    // Fall back to insertion sort for short sections
    if v.len() <= 16 {
        insertion_sort_ranges(&mut v[..], |x, y| x < y);
        return;
    }

    let (l, m, r) = (0, v.len() / 2, v.len() - 1);
    let mut pivot = if v[l] <= v[m] && v[m] <= v[r] {
        m
    } else if v[m] <= v[l] && v[l] <= v[r] {
        l
    } else {
        r
    };

    // partition
    // I think this is similar to Hoare’s version, wikipedia
    let mut i = 0;
    let mut j = v.len() - 1;
    'main: loop {
        if v[i] > v[pivot] {
            loop {
                if v[j] <= v[pivot] {
                    v.swap(i, j);
                    if j == pivot {
                        pivot = i;
                    }
                    break;
                }
                j -= 1;
                if i >= j { break 'main; }
            }
        }
        if i >= j {
            v.swap(pivot, i);
            break;
        }
        i += 1;
    }

    // ok split at pivot location and recurse
    let (a, b) = v.split_at_mut(i);
    quicksort_bounds(a);
    quicksort_bounds(b);
}


#[test]
fn test_quicksort() {
    let mut data = [1, 0];
    quicksort(&mut data);
    assert_eq!(&data, &[0, 1]);

    let mut data = [1, 2, 2, 1, 3, 3, 2, 3];
    quicksort(&mut data);
    assert_eq!(&data, &[1, 1, 2, 2, 2, 3, 3, 3]);

    let mut data = [1, 4, 2, 0, 3];
    quicksort(&mut data);
    assert_eq!(&data, &[0, 1, 2, 3, 4]);

    let mut data = [4, 3, 2, 1, 0];
    quicksort(&mut data);
    assert_eq!(&data, &[0, 1, 2, 3, 4]);

    let mut data = [0, 1, 2, 3, 4];
    quicksort(&mut data);
    assert_eq!(&data, &[0, 1, 2, 3, 4]);

    let mut data = [0, 1, 5, 2, 3, 4];
    quicksort(&mut data);
    assert_eq!(&data, &[0, 1, 2, 3, 4, 5]);

    let mut data = [0, 1, 1, -1, 0, -1];
    quicksort(&mut data);
    assert_eq!(&data, &[-1, -1, 0, 0, 1, 1]);
}

pub fn insertion_sort_indexes<T, F>(v: &mut [T], mut less_than: F) where F: FnMut(&T, &T) -> bool {
    indices(v, move |mut v, r| {
        for i in r {
            let jtail = v.scan_from_rev(i, |j_elt| less_than(&v[i], j_elt));
            v.rotate1_up(jtail);
        }
    });
}

pub fn insertion_sort_ranges<T, F>(v: &mut [T], mut less_than: F) where F: FnMut(&T, &T) -> bool {
    indices(v, move |mut v, r| {
        if let Ok(mut i) = r.nonempty() {
            while i.advance() {
                let jtail = v.scan_from_rev(i.first(), |j_elt| less_than(&v[i.first()], j_elt));
                v.rotate1_up(jtail);
            }
        }
    });
}

pub fn insertion_sort_pointerindex<T, F>(v: &mut [T], mut less_than: F) where F: FnMut(&T, &T) -> bool {
    indices(v, move |mut v, _r| {
        for i in v.pointer_range() {
            let jtail = v.scan_tail_(i, |j_elt| less_than(&v[i], j_elt));
            v.rotate1_(jtail);
        }
    });
}

/// Copied from rust / libcollections/slice.rs, using raw pointers
pub fn insertion_sort_rust<T, F>(v: &mut [T], mut less_than: F) where F: FnMut(&T, &T) -> bool {
    use std::mem;
    use std::ptr;
    let len = v.len() as isize;
    let buf_v = v.as_mut_ptr();

    // 1 <= i < len;
    for i in 1..len {
        // j satisfies: 0 <= j <= i;
        let mut j = i;
        unsafe {
            // `i` is in bounds.
            let read_ptr = buf_v.offset(i) as *const T;

            // find where to insert, we need to do strict <,
            // rather than <=, to maintain stability.

            // 0 <= j - 1 < len, so .offset(j - 1) is in bounds.
            while j > 0 && less_than(&*read_ptr, &*buf_v.offset(j - 1)) {
                j -= 1;
            }

            // shift everything to the right, to make space to
            // insert this value.

            // j + 1 could be `len` (for the last `i`), but in
            // that case, `i == j` so we don't copy. The
            // `.offset(j)` is always in bounds.

            if i != j {
                let tmp = ptr::read(read_ptr);
                ptr::copy(&*buf_v.offset(j),
                          buf_v.offset(j + 1),
                          (i - j) as usize);
                ptr::copy_nonoverlapping(&tmp, buf_v.offset(j), 1);
                mem::forget(tmp);
            }
        }
    }
}


// block swap between two different slices
/// Block swap to the shortest length of the two slices
fn block_swap2<T>(a: &mut [T], b: &mut [T]) {
    let count = cmp::min(a.len(), b.len());
    let a = &mut a[..count];
    let b = &mut b[..count];
    for i in 0..count {
        swap(&mut a[i], &mut b[i]);
    }
}

/// Merge internal: Merge inside data while using `buffer` as a swap space
///
/// `data` is in two sections, each part in sorted order, divided by `left_end`.
///
/// Merge the left and right half of data in place, while using buffer for swap space.
///
/// This is panic safe by ensuring all values are swapped and not duplicated,
/// so it is all present in either `data` or `buffer` at all times.
pub fn merge_internal_indices<T: Ord>(data: &mut [T], left_end: usize, buffer: &mut [T]) {
    debug_assert!(data.len() >= 1);
    if left_end > data.len() || left_end > buffer.len() {
        panic!("merge_internal: data or buffer too short");
    }
    indices(data, move |mut data, r| {
        indices(&mut buffer[..left_end], |mut buffer, rb| {
            let right_end = data.len();
            if right_end - left_end == 0 {
                return;
            }
            block_swap2(&mut data[r], &mut buffer[rb]);

            let mut i = match rb.contains(0) {
                Some(i) => i,
                None => return,
            };
            let mut out = match r.contains(0) {
                Some(i) => i,
                None => return,
            };
            let mut j = match r.contains(left_end) {
                Some(i) => i,
                None => return,
            };
            loop {
                if buffer[i] <= data[j] {
                    swap(&mut buffer[i], &mut data[out]);
                    data.forward(&mut out);
                    if !buffer.forward(&mut i) { break; }
                } else {
                    data.swap(j, out);
                    data.forward(&mut out);
                    if !data.forward(&mut j) {
                        // block swap remainder
                        block_swap2(&mut buffer[i..], &mut data[out..]);
                        break;
                    }
                }
            }
        })
    })
}

/// Merge internal: Merge inside data while using `buffer` as a swap space
///
/// `data` is in two sections, each part in sorted order, divided by `left_end`.
///
/// Merge the left and right half of data in place, while using buffer for swap space.
///
/// This is panic safe by ensuring all values are swapped and not duplicated,
/// so it is all present in either `data` or `buffer` at all times.
pub fn merge_internal_ranges<T: Ord>(data: &mut [T], left_end: usize, buffer: &mut [T]) {
    debug_assert!(data.len() >= 1);
    if left_end > data.len() || left_end > buffer.len() {
        panic!("merge_internal: data or buffer too short");
    }
    indices(data, |mut data, r| {
        indices(&mut buffer[..left_end], |mut buffer, rb| {
            let mut i = match rb.nonempty() {
                Ok(r) => r,
                Err(_) => return,
            };
            let mut out = match r.nonempty() {
                Ok(r) => r,
                Err(_) => return,
            };
            let mut j = match r.split_at(left_end).1.nonempty() {
                Ok(r) => r,
                Err(_) => return,
            };

            block_swap2(&mut data[r], &mut buffer[rb]);
            loop {
                if buffer[i.first()] <= data[j.first()] {
                    swap(&mut buffer[i.first()], &mut data[out.first()]);
                    if !out.advance() { return; }
                    if !i.advance() { return; }
                } else {
                    data.swap(j.first(), out.first());
                    if !out.advance() { return; }
                    if !j.advance() {
                        // block swap remainder
                        block_swap2(&mut buffer[i], &mut data[out]);
                        break;
                    }
                }
            }
        })
    })
}

#[test]
fn test_merge_internal() {
    let mut buffer = [0; 128];
    let a = (0..15).collect::<Vec<_>>();
    let b = (1..25).filter(|&x| x % 2 == 0).collect::<Vec<_>>();
    // data to sort
    let data = [&a[..], &b[..]].concat();
    let mut ans = data.clone();
    ans.sort();

    {
        let mut workspace = data.clone();
        merge_internal_indices(&mut workspace, a.len(), &mut buffer);
        assert_eq!(workspace, ans);
        assert!(buffer.iter().all(|x| *x == 0));
    }
    {
        let mut workspace = data.clone();
        merge_internal_ranges(&mut workspace, a.len(), &mut buffer);
        assert_eq!(workspace, ans);
        assert!(buffer.iter().all(|x| *x == 0));
    }
}

pub fn heapify<T: Ord>(v: &mut [T]) {
    indices(v, |mut v, range| {
        // for 0-indexed element k, children are:
        // 2k + 1, 2k + 2
        let (left, _right) = range.split_in_half();
        for i in left.into_iter().rev() {
            // Sift down element at `i`.
            let mut pos = i;
            while let Ok(mut child) = v.vet(pos.integer() * 2 + 1) {
                // pick the smaller of the two children
                let mut right = child;
                if v.forward(&mut right) && v[child] > v[right] {
                    child = right;
                }
                // sift down is done if we are already in order
                if v[pos] <= v[child] {
                    break;
                }
                //puts!("mov {:?} => {:?} (value={:?})", pos, child, &v[pos]);
                v.swap(pos, child);
                pos = child;
            }
        }
    });
}

#[test]
fn test_heapify() {
    let mut data = [8, 12, 9, 7, 22, 3, 26, 14, 11, 15, 22];
    let heap = [3, 7, 8, 11, 15, 9, 26, 14, 12, 22, 22];
    heapify(&mut data);
    assert_eq!(&data, &heap);
}

    // Sift up
    // Now sift up start..pos
        /*
    while hole.pos() > start {
        let parent = (hole.pos() - 1) / 2;
        if hole.removed() <= hole.get(parent) { break }
        hole.move_to(parent);
    }
    */
    /*
    while pos > start {
        let parent_index = (pos.index - 1) / 2;
        let parent = v.vet(parent_index).unwrap();
        if v[pos] > v[parent] { break; }
        // mov
        puts!("mov {:?} => {:?} (value={:?})", pos, parent, &v[pos]);
        v.swap(pos, parent);
        pos = parent;
        puts!("sup {:?}", &v[..]);
    }
    */

pub fn binary_search<T: Ord>(v: &[T], elt: &T) -> Result<usize, usize> {
    binary_search_by(v, |x| x.cmp(elt))
}

/// `f` is a closure that is passed `x` from the slice and should return the
/// result of `x` compared with *something*.
pub fn binary_search_by<T, F>(v: &[T], mut f: F) -> Result<usize, usize>
    where F: FnMut(&T) -> Ordering,
{
    indices(v, move |v, mut range| {
        loop {
            /* NOTE: This is sometimes a benefit. But how do we do this cleanly?
            if range.len() < 4 {
                for i in range {
                    match f(&v[i]) {
                        Ordering::Equal => return Ok(i.integer()),
                        Ordering::Greater => return Err(i.integer()),
                        Ordering::Less => { }
                    }
                }
                return Err(range.end());
            }
            */
            let (a, b) = range.split_in_half();
            if let Ok(b_) = b.nonempty() {
                let mid = b_.first();
                match f(&v[mid]) {
                    Ordering::Equal => return Ok(mid.integer()),
                    Ordering::Greater => range = a,
                    Ordering::Less => range = b_.tail(),
                }
            } else {
                break;
            }
        }
        Err(range.start())
    })
}

#[test]
fn test_binary_search() {
    let data = [3, 7, 8, 11, 15, 22, 26];
    assert_eq!(binary_search(&data, &3), Ok(0));
    assert_eq!(binary_search(&data, &2), Err(0));

    let elts = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 25, 26, 27, 28];

    for elt in &elts {
        assert_eq!(binary_search(&data, elt), data.binary_search(elt));
    }
}

pub fn lower_bound<T: PartialOrd>(v: &[T], elt: &T) -> usize {
    indices(v, move |v, mut range| {
        loop {
            // linear scan the last part;
            // looks like lower bound gains from this, unlike binary search
            if range.len() < 24 {
                let (first, _) = v.scan_range(range, |x| *x < *elt);
                return first.end();
            }
            let (a, b) = range.split_in_half();
            if let Ok(b_) = b.nonempty() {
                let mid = b_.first();
                range = if *elt <= v[mid] {
                    a
                } else {
                    b_.tail()
                };
            } else {
                break;
            }
        }
        range.start()
    })
}

#[test]
fn test_lower_bound() {
    let data = [3, 7, 8, 8, 8, 11, 11, 11, 15, 22, 22, 26];
    assert_eq!(lower_bound(&data, &8), 2);
    assert_eq!(lower_bound(&data, &7), 1);

    let elts = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 25, 26, 27, 28];

    for elt in &elts {
        assert_eq!(lower_bound(&data, elt),
            data.binary_search_by(|x| if x >= elt {
                Ordering::Greater
            } else {
                Ordering::Less
            }).unwrap_err());
    }
}