1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
use crate::{interval::*, simd::*};

impl Interval {
    /// Rounds `self` to the closest integer toward $+∞$.
    ///
    /// Tightness: tightest
    ///
    /// # Examples
    ///
    /// ```
    /// use inari::*;
    /// assert_eq!(const_interval!(0.2, 1.2).ceil(), const_interval!(1.0, 2.0));
    /// assert_eq!(const_interval!(0.8, 1.8).ceil(), const_interval!(1.0, 2.0));
    /// assert_eq!(const_interval!(-1.2, -0.2).ceil(), const_interval!(-1.0, 0.0));
    /// assert_eq!(const_interval!(-1.8, -0.8).ceil(), const_interval!(-1.0, 0.0));
    /// assert_eq!(Interval::EMPTY.ceil(), Interval::EMPTY);
    /// assert_eq!(Interval::ENTIRE.ceil(), Interval::ENTIRE);
    /// ```
    ///
    /// See also: [`Interval::floor`], [`Interval::trunc`].
    pub fn ceil(self) -> Self {
        // _mm_ceil_pd/_mm_floor_pd are slow, better to avoid shuffling them.
        // ceil([a, b]) = [-ceil(a); ceil(b)]
        let x = neg0(self.rep); // [a; b]
        let r = ceil(x); // [ceil(a); ceil(b)]
        Self { rep: neg0(r) }
    }

    /// Rounds `self` to the closest integer toward $-∞$.
    ///
    /// Tightness: tightest
    ///
    /// # Examples
    ///
    /// ```
    /// use inari::*;
    /// assert_eq!(const_interval!(0.2, 1.2).floor(), const_interval!(0.0, 1.0));
    /// assert_eq!(const_interval!(0.8, 1.8).floor(), const_interval!(0.0, 1.0));
    /// assert_eq!(const_interval!(-1.2, -0.2).floor(), const_interval!(-2.0, -1.0));
    /// assert_eq!(const_interval!(-1.8, -0.8).floor(), const_interval!(-2.0, -1.0));
    /// assert_eq!(Interval::EMPTY.floor(), Interval::EMPTY);
    /// assert_eq!(Interval::ENTIRE.floor(), Interval::ENTIRE);
    /// ```
    ///
    /// See also: [`Interval::ceil`], [`Interval::trunc`].
    pub fn floor(self) -> Self {
        // floor([a, b]) = [-floor(a); floor(b)]
        let x = neg0(self.rep); // [a; b]
        let r = floor(x); // [floor(a); floor(b)]
        Self { rep: neg0(r) }
    }

    /// Rounds `self` to the closest integer, away from zero in case of ties.
    ///
    /// Tightness: tightest
    ///
    /// # Examples
    ///
    /// ```
    /// use inari::*;
    /// assert_eq!(const_interval!(0.2, 1.2).round(), const_interval!(0.0, 1.0));
    /// assert_eq!(const_interval!(0.5, 1.5).round(), const_interval!(1.0, 2.0));
    /// assert_eq!(const_interval!(0.8, 1.8).round(), const_interval!(1.0, 2.0));
    /// assert_eq!(const_interval!(-1.2, -0.2).round(), const_interval!(-1.0, 0.0));
    /// assert_eq!(const_interval!(-1.5, -0.5).round(), const_interval!(-2.0, -1.0));
    /// assert_eq!(const_interval!(-1.8, -0.8).round(), const_interval!(-2.0, -1.0));
    /// assert_eq!(Interval::EMPTY.round(), Interval::EMPTY);
    /// assert_eq!(Interval::ENTIRE.round(), Interval::ENTIRE);
    /// ```
    ///
    /// See also: [`Interval::round_ties_to_even`].
    pub fn round(self) -> Self {
        Self {
            rep: round(self.rep),
        }
    }

    /// Rounds `self` to the closest integer, the even number in case of ties.
    ///
    /// Tightness: tightest
    ///
    /// # Examples
    ///
    /// ```
    /// use inari::*;
    /// assert_eq!(const_interval!(0.2, 1.2).round_ties_to_even(), const_interval!(0.0, 1.0));
    /// assert_eq!(const_interval!(0.5, 1.5).round_ties_to_even(), const_interval!(0.0, 2.0));
    /// assert_eq!(const_interval!(0.8, 1.8).round_ties_to_even(), const_interval!(1.0, 2.0));
    /// assert_eq!(const_interval!(-1.2, -0.2).round_ties_to_even(), const_interval!(-1.0, 0.0));
    /// assert_eq!(const_interval!(-1.5, -0.5).round_ties_to_even(), const_interval!(-2.0, 0.0));
    /// assert_eq!(const_interval!(-1.8, -0.8).round_ties_to_even(), const_interval!(-2.0, -1.0));
    /// assert_eq!(Interval::EMPTY.round_ties_to_even(), Interval::EMPTY);
    /// assert_eq!(Interval::ENTIRE.round_ties_to_even(), Interval::ENTIRE);
    /// ```
    ///
    /// See also: [`Interval::round`].
    pub fn round_ties_to_even(self) -> Self {
        Self {
            rep: round_ties_to_even(self.rep),
        }
    }

    /// Returns the sign of `self`.
    ///
    /// Note the difference in definition between [`f64::signum`] and this function;
    /// `+0.0_f64.signum()` and `-0.0_f64.signum()` return `+1.0` and `-1.0`, respectively,
    /// while the sign of zero is just zero,
    ///
    /// Tightness: tightest
    ///
    /// # Examples
    ///
    /// ```
    /// use inari::*;
    /// assert_eq!(const_interval!(-10.0, -0.1).sign(), const_interval!(-1.0, -1.0));
    /// assert_eq!(const_interval!(0.0, 0.0).sign(), const_interval!(0.0, 0.0));
    /// assert_eq!(const_interval!(0.1, 10.0).sign(), const_interval!(1.0, 1.0));
    /// assert_eq!(Interval::EMPTY.sign(), Interval::EMPTY);
    /// assert_eq!(Interval::ENTIRE.sign(), const_interval!(-1.0, 1.0));
    /// ```
    pub fn sign(self) -> Self {
        if self.is_empty() {
            return Self::EMPTY;
        }

        let zero = splat(0.0);
        let gt_zero_mask = gt(self.rep, zero);
        let lt_zero_mask = lt(self.rep, zero);
        // [-(a ≀ 0), b β‰₯ 0] = [-a β‰₯ 0; b β‰₯ 0]
        let one_or_zero = and(splat(1.0), gt_zero_mask);
        // [a β‰₯ 0, -(b ≀ 0)] = [-(-a ≀ 0); -(b ≀ 0)]
        let m_one_or_zero = and(splat(-1.0), lt_zero_mask);
        // Gives the same result as addition, but faster.
        let r = or(one_or_zero, m_one_or_zero);
        Self { rep: r }
    }

    /// Rounds `self` to the closest integer toward zero.
    ///
    /// Tightness: tightest
    ///
    /// # Examples
    ///
    /// ```
    /// use inari::*;
    /// assert_eq!(const_interval!(0.2, 1.2).trunc(), const_interval!(0.0, 1.0));
    /// assert_eq!(const_interval!(0.8, 1.8).trunc(), const_interval!(0.0, 1.0));
    /// assert_eq!(const_interval!(-1.2, -0.2).trunc(), const_interval!(-1.0, 0.0));
    /// assert_eq!(const_interval!(-1.8, -0.8).trunc(), const_interval!(-1.0, 0.0));
    /// assert_eq!(Interval::EMPTY.trunc(), Interval::EMPTY);
    /// assert_eq!(Interval::ENTIRE.trunc(), Interval::ENTIRE);
    /// ```
    ///
    /// See also: [`Interval::ceil`], [`Interval::floor`].
    pub fn trunc(self) -> Self {
        Self {
            rep: trunc(self.rep),
        }
    }
}

macro_rules! impl_dec {
    // is_not_com(x, y) tests if f is not continuous at some point of x,
    // provided that x and y := f(x) are bounded and p_dac(f, x) holds,
    // in which case y is a singleton.
    // The boundedness of x and y are checked by the last statement.
    // In rounding functions, you can effectively check if an endpoint of x
    // is an integer by x.inf == y.inf or x.sup == y.sup.
    ($f:ident, $x:ident, $y:ident, $is_not_com:expr) => {
        #[doc = concat!("See [`Interval::", stringify!($f), "`].")]
        pub fn $f(self) -> Self {
            if self.is_nai() {
                return self;
            }

            let $x = self.x;
            let $y = $x.$f();
            let d = if $y.is_empty() {
                Decoration::Trv
            } else if !$y.is_singleton() {
                Decoration::Def
            } else if $is_not_com {
                Decoration::Dac
            } else {
                Decoration::Com
            };
            Self::set_dec($y, d.min(self.d))
        }
    };
}

// https://www.ocf.berkeley.edu/~horie/rounding.html
impl DecInterval {
    // Discontinuities: β„€.
    impl_dec!(ceil, x, y, x.sup_raw() == y.sup_raw()); // No need to check inf.
    impl_dec!(floor, x, y, x.inf_raw() == y.inf_raw()); // No need to check sup.

    // Discontinuities: {x + 0.5 ∣ x ∈ β„€}.
    impl_dec!(round, x, y, {
        let abs_a = x.inf_raw().abs();
        let abs_b = x.sup_raw().abs();
        (abs_a - abs_a.trunc() == 0.5) || (abs_b - abs_b.trunc() == 0.5)
    });
    impl_dec!(round_ties_to_even, x, y, {
        let abs_a = x.inf_raw().abs();
        let abs_b = x.sup_raw().abs();
        (abs_a - abs_a.trunc() == 0.5) || (abs_b - abs_b.trunc() == 0.5)
    });

    // Discontinuities: {0}.
    impl_dec!(sign, x, y, x.inf_raw() == 0.0); // No need to check sup.

    // Discontinuities: β„€ βˆ– {0}.
    impl_dec!(
        trunc,
        x,
        y,
        (x.inf_raw() != 0.0 && x.inf_raw() == y.inf_raw())
            || (x.sup_raw() != 0.0 && x.sup_raw() == y.sup_raw())
    );
}

#[cfg(test)]
mod tests {
    use crate::*;
    use DecInterval as DI;
    use Interval as I;

    #[test]
    fn empty() {
        assert!(I::EMPTY.ceil().is_empty());
        assert!(I::EMPTY.floor().is_empty());
        assert!(I::EMPTY.round().is_empty());
        assert!(I::EMPTY.round_ties_to_even().is_empty());
        assert!(I::EMPTY.sign().is_empty());
        assert!(I::EMPTY.trunc().is_empty());

        assert!(DI::EMPTY.ceil().is_empty());
        assert!(DI::EMPTY.floor().is_empty());
        assert!(DI::EMPTY.round().is_empty());
        assert!(DI::EMPTY.round_ties_to_even().is_empty());
        assert!(DI::EMPTY.sign().is_empty());
        assert!(DI::EMPTY.trunc().is_empty());
    }

    #[test]
    fn nai() {
        assert!(DI::NAI.ceil().is_nai());
        assert!(DI::NAI.floor().is_nai());
        assert!(DI::NAI.round().is_nai());
        assert!(DI::NAI.round_ties_to_even().is_nai());
        assert!(DI::NAI.sign().is_nai());
        assert!(DI::NAI.trunc().is_nai());
    }
}