1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
use crate::{BoundingBox, Object, PrimitiveParameters, RealField};
use num_traits::Float;

/// Twister will twist an object by rotating it along the Z-Axis.
#[derive(Clone, Debug)]
pub struct Twister<S: RealField> {
    object: Box<dyn Object<S>>,
    height_scaler: S, // 2 * pi / (height for full rotation)
    value_scaler: S,
    bbox: BoundingBox<S>,
}

impl<S: RealField + From<f32> + Float + ::num_traits::FloatConst> Object<S> for Twister<S> {
    fn approx_value(&self, p: &na::Point3<S>, slack: S) -> S {
        let approx = self.bbox.distance(p);
        if approx <= slack {
            self.object
                .approx_value(&self.twist_point(p), slack / self.value_scaler)
                * self.value_scaler
        } else {
            approx
        }
    }
    fn bbox(&self) -> &BoundingBox<S> {
        &self.bbox
    }
    fn set_parameters(&mut self, p: &PrimitiveParameters<S>) {
        self.object.set_parameters(p);
    }
    fn normal(&self, p: &na::Point3<S>) -> na::Vector3<S> {
        self.untwist_normal(&self.object.normal(&self.twist_point(&p)), p)
    }
}

impl<S: RealField + Float + ::num_traits::FloatConst + From<f32>> Twister<S> {
    /// Create a twisted version ob o.
    /// o: Object to be twisted, h: height for one full rotation
    pub fn new(o: Box<dyn Object<S>>, h: S) -> Self {
        let _2pi: S = S::PI() * From::from(2.);
        let mx = Float::max(Float::abs(o.bbox().min.x), Float::abs(o.bbox().max.x));
        let my = Float::max(Float::abs(o.bbox().min.y), Float::abs(o.bbox().max.y));
        let r = Float::hypot(mx, my);

        // The ratio of height and circumference (slope on the outer edge).
        let tan_a = Float::abs(h) / (_2pi * r);
        // The scaler is 1 / sin(a)
        // sin(atan(x)) =   x / sqrt(x^2 + 1)
        let one: S = From::from(1f32);
        let scaler = tan_a / Float::sqrt(tan_a * tan_a + one);

        let bbox = BoundingBox::<S>::new(
            &na::Point3::new(-r, -r, o.bbox().min.z),
            &na::Point3::new(r, r, o.bbox().max.z),
        );
        Twister {
            object: o,
            height_scaler: _2pi / h,
            value_scaler: scaler,
            bbox,
        }
    }
    fn twist_point(&self, p: &na::Point3<S>) -> na::Point3<S> {
        let p2 = ::na::Point2::new(p.x, p.y);
        let angle = p.z * self.height_scaler;
        type Rota<S> = ::na::Rotation<S, ::na::U2>;
        let trans = Rota::new(angle);
        let rp2 = trans.transform_point(&p2);
        na::Point3::new(rp2.x, rp2.y, p.z)
    }
    // Apply tilt to the vector.
    // Since Surfaces are twisted, all normals will be tilted, depending on the radius.
    fn tilt_normal(&self, normal: na::Vector3<S>, p: &na::Point3<S>) -> na::Vector3<S> {
        let radius_v = ::na::Vector2::new(p.x, p.y);
        let radius = radius_v.norm();
        let radius_v = radius_v / radius;
        // Calculate tangential unit na::Vector3<S> at p.
        let tangent_v = ::na::Vector2::new(radius_v.y, -radius_v.x);

        // Project the in plane component of normal onto tangent.
        let planar_normal = ::na::Vector2::new(normal.x, normal.y);
        let tangential_projection = tangent_v.dot(&planar_normal);

        // Calculate the shear at p.
        let tangential_shear = radius * self.height_scaler;

        // Subtract from normal.z.
        let mut result = normal;
        result.z -= tangential_shear * tangential_projection;

        // Normalize.
        result.normalize()
    }
    fn untwist_normal(&self, v: &na::Vector3<S>, p: &na::Point3<S>) -> na::Vector3<S> {
        let v2 = ::na::Vector2::new(v.x, v.y);
        let angle = -p.z * self.height_scaler;
        let trans = ::na::Rotation2::new(angle);
        let rv2 = trans.transform_vector(&v2);
        self.tilt_normal(na::Vector3::new(rv2.x, rv2.y, v.z), p)
    }
}

#[cfg(test)]
mod test {
    use crate::test::MockObject;
    use crate::*;

    #[test]
    fn simple() {
        let m = MockObject::new_with_bbox(
            10.0,
            na::Vector3::new(1., 0., 0.),
            BoundingBox::new(
                &na::Point3::new(-1., -1., -100.),
                &na::Point3::new(1., 1., 100.),
            ),
        );
        let t = Twister::new(Box::new(m), 4.);
        assert_relative_eq!(
            t.approx_value(&na::Point3::new(0., 0., 0.), 0.),
            4.104_846_065_998_354
        );
        assert_relative_eq!(
            t.normal(&na::Point3::new(1., 0., 0.)),
            na::Vector3::new(1., 0., 0.)
        );

        assert_relative_eq!(
            t.approx_value(&na::Point3::new(0., 0., 1.), 0.),
            4.104_846_065_998_354
        );
        ulps_eq!(
            t.normal(&na::Point3::new(1., 0., 1.)),
            na::Vector3::new(0., -0.537_029_272_146_315_1, 0.843_563_608_068_768_6)
        );

        assert_relative_eq!(
            t.approx_value(&na::Point3::new(0., 0., 2.), 0.),
            4.104_846_065_998_354
        );
        assert_relative_eq!(
            t.normal(&na::Point3::new(1., 0., 2.)),
            na::Vector3::new(-1., 0., 0.)
        );

        assert_relative_eq!(
            t.approx_value(&na::Point3::new(0., 0., 3.), 0.),
            4.104_846_065_998_354
        );
        assert_relative_eq!(
            t.normal(&na::Point3::new(1., 0., 3.)),
            na::Vector3::new(0., 0.537_029_272_146_315_1, 0.843_563_608_068_768_6)
        );

        assert_relative_eq!(
            t.approx_value(&na::Point3::new(0., 0., 4.), 0.),
            4.104_846_065_998_354
        );
        assert_relative_eq!(
            t.normal(&na::Point3::new(1., 0., 4.)),
            na::Vector3::new(1., 0.0, 0.0),
            epsilon = 10e-10
        );
    }
}