1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use crate::{BoundingBox, Object, PrimitiveParameters, RealField};
use num_traits::Float;

#[derive(Clone, Debug)]
/// AffineTransformer is a primitive that takes an object as input and allows to modify it using
/// affine transforms.
/// Usually it is used indirectly through ```Object::scale()```, ```Object::translate()``` or ```Object::rotate()```.
pub struct AffineTransformer<S: RealField> {
    object: Box<dyn Object<S>>,
    transform: na::Matrix4<S>,
    transposed3x3: na::Matrix3<S>,
    scale_min: S,
    bbox: BoundingBox<S>,
}

impl<S: RealField + Float + From<f32>> Object<S> for AffineTransformer<S> {
    fn approx_value(&self, p: &na::Point3<S>, slack: S) -> S {
        let approx = self.bbox.distance(p);
        if approx <= slack {
            self.object
                .approx_value(&self.transform.transform_point(&p), slack / self.scale_min)
                * self.scale_min
        } else {
            approx
        }
    }
    fn bbox(&self) -> &BoundingBox<S> {
        &self.bbox
    }
    fn set_parameters(&mut self, p: &PrimitiveParameters<S>) {
        self.object.set_parameters(p);
    }
    fn normal(&self, p: &na::Point3<S>) -> na::Vector3<S> {
        let normal_at_p = self.object.normal(&self.transform.transform_point(&p));
        let transformed_normal = self.transposed3x3 * normal_at_p;
        transformed_normal.normalize()
    }
    fn translate(&self, v: &na::Vector3<S>) -> Box<dyn Object<S>> {
        let new_trans = self.transform.prepend_translation(&-v);
        Box::new(AffineTransformer::new_with_scaler(
            self.object.clone(),
            new_trans,
            self.scale_min,
        ))
    }
    fn rotate(&self, r: &na::Vector3<S>) -> Box<dyn Object<S>> {
        let euler = ::na::Rotation::from_euler_angles(r.x, r.y, r.z).to_homogeneous();
        let new_trans = self.transform * euler;
        Box::new(AffineTransformer::new_with_scaler(
            self.object.clone(),
            new_trans,
            self.scale_min,
        ))
    }
    fn scale(&self, s: &na::Vector3<S>) -> Box<dyn Object<S>> {
        let one: S = From::from(1f32);
        let new_trans = self.transform.prepend_nonuniform_scaling(&na::Vector3::new(
            one / s.x,
            one / s.y,
            one / s.z,
        ));
        Box::new(AffineTransformer::new_with_scaler(
            self.object.clone(),
            new_trans,
            self.scale_min * Float::min(s.x, Float::min(s.y, s.z)),
        ))
    }
}

impl<S: RealField + Float + From<f32>> AffineTransformer<S> {
    fn identity(o: Box<dyn Object<S>>) -> Self {
        AffineTransformer::new(o, na::Matrix4::identity())
    }
    fn new(o: Box<dyn Object<S>>, t: na::Matrix4<S>) -> Self {
        let one: S = From::from(1f32);
        AffineTransformer::new_with_scaler(o, t, one)
    }
    fn new_with_scaler(o: Box<dyn Object<S>>, t: na::Matrix4<S>, scale_min: S) -> Self {
        // TODO: Calculate scale_min from t.
        // This should be something similar to
        // 1./Vector::new(t.x.x, t.y.x, t.z.x).magnitude().min(
        // 1./Vector::new(t.x.y, t.y.y, t.z.y).magnitude().min(
        // 1./Vector::new(t.x.z, t.y.z, t.z.z).magnitude()))
        match t.try_inverse() {
            None => panic!("Failed to invert {:?}", t),
            Some(ref t_inv) => {
                let bbox = o.bbox().transform(t_inv);
                let transposed3x3 = t
                    .fixed_slice::<::na::core::dimension::U3, ::na::core::dimension::U3>(0, 0)
                    .transpose();
                AffineTransformer {
                    object: o,
                    transform: t,
                    transposed3x3,
                    scale_min,
                    bbox,
                }
            }
        }
    }
    /// Create a new translated version of the input.
    pub fn new_translate(o: Box<dyn Object<S>>, v: &na::Vector3<S>) -> Box<dyn Object<S>> {
        AffineTransformer::identity(o).translate(v)
    }
    /// Create a new rotated version of the input.
    pub fn new_rotate(o: Box<dyn Object<S>>, r: &na::Vector3<S>) -> Box<dyn Object<S>> {
        AffineTransformer::identity(o).rotate(r)
    }
    /// Create a new scaled version of the input.
    pub fn new_scale(o: Box<dyn Object<S>>, s: &na::Vector3<S>) -> Box<dyn Object<S>> {
        AffineTransformer::identity(o).scale(s)
    }
}

#[cfg(test)]
mod test {
    use crate::test::MockObject;
    use crate::Object;

    #[test]
    fn translate() {
        let normal = na::Vector3::new(1.0, 0.0, 0.0);
        let mut mock_object = MockObject::new(1.0, normal);
        let receiver = mock_object.add_normal_call_recorder(1);
        let translation = na::Vector3::new(0.0001, 0.0, 0.0);
        let translated = mock_object.translate(&translation);
        let p = na::Point3::new(1.0, 0.0, 0.0);
        assert_eq!(translated.normal(&p), normal);
        assert_eq!(receiver.recv().unwrap(), p - translation);
    }

    #[test]
    fn scale() {
        let normal = na::Vector3::new(1.0, 0.0, 0.0);
        let mut mock_object = MockObject::new(1.0, normal);
        let receiver = mock_object.add_normal_call_recorder(1);
        let scale = na::Vector3::new(0.1, 0.1, 0.1);
        let scaled = mock_object.scale(&scale);
        let p = na::Point3::new(1.0, 0.0, 0.0);
        assert_eq!(scaled.normal(&p), normal);
        assert_eq!(receiver.recv().unwrap(), p / 0.1);
    }

    #[test]
    fn rotate() {
        let normal = na::Vector3::new(1.0, 0.0, 0.0);
        let mut mock_object = MockObject::new(1.0, normal);
        let receiver = mock_object.add_normal_call_recorder(1);
        let rotation = na::Vector3::new(0.0, 0.0, ::std::f64::consts::PI / 6.0);
        let rotated = mock_object.rotate(&rotation);
        let p = na::Point3::new(1.0, 0.0, 0.0);

        assert_relative_eq!(
            rotated.normal(&p),
            na::Vector3::new(num_traits::Float::sqrt(3.0) / 2.0, -0.5, 0.0)
        );
        assert_relative_eq!(
            receiver.try_recv().unwrap(),
            na::Point3::new(num_traits::Float::sqrt(3.0) / 2.0, 0.5, 0.0)
        );
    }

    #[test]
    fn scale_and_translate() {
        let normal = na::Vector3::new(1.0, 0.0, 0.0);
        let mut mock_object = MockObject::new(1.0, normal);
        let receiver = mock_object.add_normal_call_recorder(1);
        let scale = na::Vector3::new(0.1, 0.1, 0.1);
        let scaled = mock_object.scale(&scale);
        let translation = na::Vector3::new(5.0, 0.0, 0.0);
        let translated = scaled.translate(&translation);
        let p = na::Point3::new(1.0, 0.0, 0.0);
        assert_eq!(translated.normal(&p), normal);
        assert_eq!(receiver.recv().unwrap(), (p - translation) / 0.1);
    }

    #[test]
    fn translate_and_scale() {
        let normal = na::Vector3::new(1.0, 0.0, 0.0);
        let mut mock_object = MockObject::new(1.0, normal);
        let receiver = mock_object.add_normal_call_recorder(1);
        let translation = na::Vector3::new(5.0, 0.0, 0.0);
        let translated = mock_object.translate(&translation);
        let scale = na::Vector3::new(0.1, 0.1, 0.1);
        let scaled = translated.scale(&scale);
        let p = na::Point3::new(1.0, 0.0, 0.0);
        assert_eq!(scaled.normal(&p), normal);
        assert_eq!(receiver.recv().unwrap(), p / 0.1 - translation);
    }

    #[test]
    fn rotate_and_translate() {
        let normal = na::Vector3::new(1.0, 0.0, 0.0);
        let mut mock_object = MockObject::new(1.0, normal);
        let receiver = mock_object.add_normal_call_recorder(1);
        let rotation = na::Vector3::new(0.0, 0.0, ::std::f64::consts::PI / 2.0);
        let rotated = mock_object.rotate(&rotation);
        let translation = na::Vector3::new(5.0, 0.0, 0.0);
        let translated = rotated.translate(&translation);
        let p = na::Point3::new(1.0, 0.0, 0.0);
        translated.normal(&p);
        assert_relative_eq!(
            receiver.recv().unwrap(),
            na::Point3::new(
                p.y - translation.y,
                p.x - translation.x,
                p.z - translation.z
            ),
            epsilon = 10e-10
        );
    }

    #[test]
    fn translate_and_rotate() {
        let normal = na::Vector3::new(1.0, 0.0, 0.0);
        let mut mock_object = MockObject::new(1.0, normal);
        let receiver = mock_object.add_normal_call_recorder(1);
        let translation = na::Vector3::new(5.0, 0.0, 0.0);
        let translated = mock_object.translate(&translation);
        let rotation = na::Vector3::new(0.0, 0.0, ::std::f64::consts::PI / 2.0);
        let rotated = translated.rotate(&rotation);
        let p = na::Point3::new(1.0, 0.0, 0.0);
        rotated.normal(&p);
        assert_relative_eq!(
            receiver.recv().unwrap(),
            na::Point3::new(p.y, p.x, p.z) - translation,
            epsilon = 10e-10
        );
    }
}