1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
//! A crate that provides several perceptual hashing algorithms for images.
//! Supports images opened with the [image] crate from Piston.
//!
//! ```rust,no_run
//! extern crate image;
//! extern crate img_hash;
//! 
//! use img_hash::{HasherConfig, HashAlg};
//!
//! fn main() {
//!     let image1 = image::open("image1.png").unwrap();
//!     let image2 = image::open("image2.png").unwrap();
//!     
//!     let hasher = HasherConfig::new().to_hasher();
//!
//!     let hash1 = hasher.hash_image(&image1);
//!     let hash2 = hasher.hash_image(&image2);
//!     
//!     println!("Image1 hash: {}", hash1.to_base64());
//!     println!("Image2 hash: {}", hash2.to_base64());
//!     
//!     println!("Hamming Distance: {}", hash1.dist(&hash2));
//! }
//! ```
//! [image]: https://github.com/PistonDevelopers/image
#![deny(missing_docs)]
#![cfg_attr(feature = "nightly", feature(specialization))]

extern crate base64;

#[macro_use]
extern crate serde;

pub extern crate image;

extern crate rustdct;
extern crate transpose;

use serde::{Serialize, Deserialize};

use image::{GrayImage};
use image::imageops;

pub use image::imageops::FilterType;

use std::borrow::Cow;
use std::fmt;
use std::marker::PhantomData;

mod dct;

use dct::DctCtxt;

mod alg;
mod traits;

pub use alg::HashAlg;

pub use traits::{HashBytes, Image, DiffImage};
pub(crate) use traits::BitSet;

/// **Start here**. Configuration builder for [`Hasher`](::Hasher).
///
/// Playing with the various options on this struct allows you to tune the performance of image
/// hashing to your needs.
///
/// Sane, reasonably fast defaults are provided by the [`::new()`](#method.new) constructor. If
/// you just want to start hashing images and don't care about the details, it's as simple as:
///
/// ```rust
/// use img_hash::HasherConfig;
///
/// let hasher = HasherConfig::new().to_hasher();
/// // hasher.hash_image(image);
/// ```
///
/// # Configuration Options
/// The hash API is highly configurable to tune both performance characteristics and hash
/// resilience.
///
/// ### Hash Size
/// Setter: [`.hash_size()`](#method.hash_size)
///
/// Dimensions of the final hash, as width x height, in bits. A hash size of `8, 8` produces an
/// 8 x 8 bit (8 byte) hash. Larger hash sizes take more time to compute as well as more memory,
/// but aren't necessarily better for comparing images. The best hash size depends on both
/// the [hash algorithm](#hash-algorithm) and the input dataset. If your images are mostly
/// wide aspect ratio (landscape) then a larger width and a smaller height hash size may be
/// preferable. Optimal values can really only be discovered empirically though.
///
/// (As the author experiments, suggested values will be added here for various algorithms.)
///
/// ### Hash Algorithm
/// Setter: [`.hash_alg()`](#method.hash_alg)
/// Definition: [`HashAlg`](enum.HashAlg.html)
///
/// Multiple methods of calculating image hashes are provided in this crate under the `HashAlg`
/// enum. Each algorithm is different but they all produce the same size hashes as governed by
/// `hash_size`.
///
/// ### Hash Bytes Container / `B` Type Param
/// Use [`with_bytes_type::<B>()`](#method.with_bytes_type) instead of `new()` to customize.
///
/// This hash API allows you to specify the bytes container type for generated hashes. The default
/// allows for any arbitrary hash size (see above) but requires heap-allocation. Instead, you
/// can select an array type which allows hashes to be allocated inline, but requires consideration
/// of the possible sizes of hash you want to generate so you don't waste memory.
///
/// Another advantage of using a constant-sized hash type is that the compiler may be able to
/// produce more optimal code for generating and comparing hashes.
///
/// ```rust
/// # use img_hash::*;
///
/// // Use default container type, good for any hash size
/// let config = HasherConfig::new();
///
/// /// Inline hash container that exactly fits the default hash size
/// let config = HasherConfig::with_bytes_type::<[u8; 8]>();
/// ```
///
#[derive(Serialize, Deserialize)]
pub struct HasherConfig<B = Box<[u8]>> {
    width: u32,
    height: u32,
    gauss_sigmas: Option<[f32; 2]>,
    #[serde(with = "SerdeFilterType")]
    resize_filter: FilterType,
    dct: bool,
    hash_alg: HashAlg,
    _bytes_type: PhantomData<B>,
}

impl HasherConfig<Box<[u8]>> {
    /// Construct a new hasher config with sane, reasonably fast defaults.
    ///
    /// A default hash container type is provided as a default type parameter which is guaranteed
    /// to fit any hash size.
    pub fn new() -> Self {
        Self::with_bytes_type()
    }

    /// Construct a new config with the selected [`HashBytes`](trait.HashBytes.html) impl.
    ///
    /// You may opt for an array type which allows inline allocation of hash data.
    ///
    /// ### Note
    /// The default hash size requires 64 bits / 8 bytes of storage. You can change this
    /// with [`.hash_size()`](#method.hash_size).
    pub fn with_bytes_type<B_: HashBytes>() -> HasherConfig<B_> {
        HasherConfig {
            width: 8,
            height: 8,
            gauss_sigmas: None,
            resize_filter: FilterType::Lanczos3,
            dct: false,
            hash_alg: HashAlg::Gradient,
            _bytes_type: PhantomData,
        }
    }
}

impl<B: HashBytes> HasherConfig<B> {
    /// Set a new hash width and height; these can be the same.
    ///
    /// The number of bits in the resulting hash will be `width * height`. If you are using
    /// a fixed-size `HashBytes` type then you must ensure it can hold at least this many bits.
    /// You can check this with [`HashBytes::max_bits()`](#method.max_bits).
    ///
    /// ### Rounding Behavior
    /// Certain hash algorithms need to round this value to function properly:
    ///
    /// * [`DoubleGradient`](enum.HashAlg.html#variant.DoubleGradient) rounds to the next multiple of 2;
    /// * [`Blockhash`](enum.HashAlg.html#variant.Blockhash) rounds to the next multiple of 4.
    ///
    /// If the chosen values already satisfy these requirements then nothing is changed.
    ///
    /// ### Recommended Values
    /// The hash granularity increases with `width * height`, although there are diminishing
    /// returns for higher values. Start small. A good starting value to try is `8, 8`.
    ///
    /// When using DCT preprocessing having `width` and `height` be the same value will improve
    /// hashing performance as only one set of coefficients needs to be used.
    pub fn hash_size(self, width: u32, height: u32) -> Self {
        Self { width, height, ..self  }
    }

    /// Set the filter used to resize images during hashing.
    ///
    /// Note when picking a filter that images are almost always reduced in size.
    /// Has no effect with the Blockhash algorithm as it does not resize.
    pub fn resize_filter(self, resize_filter: FilterType) -> Self {
        Self { resize_filter, ..self }
    }

    /// Set the algorithm used to generate hashes.
    ///
    /// Each algorithm has different performance characteristics.
    pub fn hash_alg(self, hash_alg: HashAlg) -> Self {
        Self { hash_alg, ..self }
    }

    /// Enable preprocessing with the Discrete Cosine Transform (DCT).
    ///
    /// Does nothing when used with [the Blockhash.io algorithm](HashAlg::Blockhash)
    /// which does not scale the image.
    /// (RFC: it would be possible to shoehorn a DCT into the Blockhash algorithm but it's
    /// not clear what benefits, if any, that would provide).
    ///
    /// After conversion to grayscale, the image is scaled down to `width * 2 x height * 2`
    /// and then the Discrete Cosine Transform is performed on the luminance values. The DCT
    /// essentially transforms the 2D image from the spatial domain with luminance values
    /// to a 2D frequency domain where the values are amplitudes of cosine waves. The resulting
    /// 2D matrix is then cropped to the low `width * height` corner and the
    /// configured hash algorithm is performed on that.
    ///
    /// In layman's terms, this essentially converts the image into a mathematical representation
    /// of the "broad strokes" of the data, which allows the subsequent hashing step to be more
    /// robust against changes that may otherwise produce different hashes, such as significant
    /// edits to portions of the image.
    ///
    /// However, on most machines this usually adds an additional 50-100% to the average hash time.
    ///
    /// This is a very similar process to JPEG compression, although the implementation is too
    /// different for this to be optimized specifically for JPEG encoded images.
    ///
    /// Further Reading:
    /// * http://www.hackerfactor.com/blog/?/archives/432-Looks-Like-It.html
    /// Krawetz describes a "pHash" algorithm which is equivalent to Mean + DCT preprocessing here.
    /// However there is nothing to say that DCT preprocessing cannot compose with other hash
    /// algorithms; Gradient + DCT might well perform better in some aspects.
    /// * https://en.wikipedia.org/wiki/Discrete_cosine_transform
    pub fn preproc_dct(self) -> Self {
        Self { dct: true, ..self }
    }

    /// Enable preprocessing with the Difference of Gaussians algorithm with default sigma values.
    ///
    /// Recommended only for use with [the Blockhash.io algorithm](enum.HashAlg#variant.Blockhash)
    /// as it significantly reduces entropy in the scaled down image for other algorithms.
    ///
    /// See [`Self::preproc_diff_gauss_sigmas()](#method.preproc_diff_gauss_sigmas) for more info.
    pub fn preproc_diff_gauss(self) -> Self {
        self.preproc_diff_gauss_sigmas(5.0, 10.0)
    }

    /// Enable preprocessing with the Difference of Gaussians algorithm with the given sigma values.
    ///
    /// Recommended only for use with [the Blockhash.io algorithm](enum.HashAlg#variant.Blockhash)
    /// as it significantly reduces entropy in the scaled down image for other algorithms.
    ///
    /// After the image is converted to grayscale, it is blurred with a Gaussian blur using
    /// two different sigmas, and then the images are subtracted from each other. This reduces
    /// the image to just sharp transitions in luminance, i.e. edges. Varying the sigma values
    /// changes how sharp the edges are^[citation needed].
    ///
    /// Further reading:
    /// * https://en.wikipedia.org/wiki/Difference_of_Gaussians
    /// * http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
    /// (Difference of Gaussians is an approximation of a Laplacian of Gaussian filter)
    pub fn preproc_diff_gauss_sigmas(self, sigma_a: f32, sigma_b: f32) -> Self {
        Self { gauss_sigmas: Some([sigma_a, sigma_b]), ..self }
    }

    /// Create a [`Hasher`](struct.Hasher.html) from this config which can be used to hash images.
    ///
    /// ### Panics
    /// If the chosen hash size (`width x height`, rounded for the algorithm if necessary)
    /// is too large for the chosen container type (`B::max_bits()`).
    pub fn to_hasher(&self) -> Hasher<B> {
        let Self { hash_alg, width, height, gauss_sigmas, resize_filter, dct, .. } = *self;

        let (width, height) = hash_alg.round_hash_size(width, height);

        assert!((width * height) as usize <= B::max_bits(),
                "hash size too large for container: {} x {}", width, height);

        // Blockhash doesn't resize the image so don't waste time calculating coefficients
        let dct_coeffs = if dct && hash_alg != HashAlg::Blockhash {
            // calculate the coefficients based on the resize dimensions
            let (dct_width, dct_height) = hash_alg.resize_dimensions(width, height);
            Some(DctCtxt::new(dct_width, dct_height))
        } else {
            None
        };

        Hasher {
            ctxt: HashCtxt {
                gauss_sigmas,
                dct_ctxt: dct_coeffs, width, height, resize_filter,
            },
            hash_alg,
            bytes_type: PhantomData
        }

    }
}

// cannot be derived because of `FilterType`
impl<B> fmt::Debug for HasherConfig<B> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("HasherConfig")
            .field("width", &self.width)
            .field("height", &self.height)
            .field("hash_alg", &self.hash_alg)
            .field("resize_filter", &debug_filter_type(&self.resize_filter))
            .field("gauss_sigmas", &self.gauss_sigmas)
            .field("use_dct", &self.dct)
            .finish()
    }
}

/// Generates hashes for images.
///
/// Constructed via [`HasherConfig::to_hasher()`](struct.HasherConfig#method.to_hasher).
pub struct Hasher<B = Box<[u8]>> {
    ctxt: HashCtxt,
    hash_alg: HashAlg,
    bytes_type: PhantomData<B>,
}

impl<B> Hasher<B> where B: HashBytes {
    /// Calculate a hash for the given image with the configured options.
    pub fn hash_image<I: Image>(&self, img: &I) -> ImageHash<B> {
        let hash = self.hash_alg.hash_image(&self.ctxt, img);
        ImageHash { hash, __backcompat: () }
    }
}

enum CowImage<'a, I: Image> {
    Borrowed(&'a I),
    Owned(I::Buf),
}

impl<'a, I: Image> CowImage<'a, I> {
    fn to_grayscale(&self) -> Cow<GrayImage> {
        match *self {
            CowImage::Borrowed(ref img) => img.to_grayscale(),
            CowImage::Owned(ref img) => img.to_grayscale(),
        }
    }
}

enum HashVals {
    Floats(Vec<f32>),
    Bytes(Vec<u8>),
}

// TODO: implement `Debug`, needs adaptor for `FilterType`
struct HashCtxt {
    gauss_sigmas: Option<[f32; 2]>,
    dct_ctxt: Option<DctCtxt>,
    resize_filter: FilterType,
    width: u32,
    height: u32,
}

impl HashCtxt {
    /// If Difference of Gaussians preprocessing is configured, produce a new image with it applied.
    fn gauss_preproc<'a, I: Image>(&self, image: &'a I) -> CowImage<'a, I> {
        if let Some([sigma_a, sigma_b]) = self.gauss_sigmas {
            let mut blur_a = image.blur(sigma_a);
            let blur_b = image.blur(sigma_b);
            blur_a.diff_inplace(&blur_b);

            CowImage::Owned(blur_a)
        } else {
            CowImage::Borrowed(image)
        }
    }

    /// If DCT preprocessing is configured, produce a vector of floats, otherwise a vector of bytes.
    fn calc_hash_vals(&self, img: &GrayImage, width: u32, height: u32) -> HashVals {
        if let Some(ref dct_ctxt) = self.dct_ctxt {
            let img = imageops::resize(img, dct_ctxt.width(), dct_ctxt.height(),
                                       self.resize_filter);

            let img_vals  = img.into_vec();
            let input_len = img_vals.len() * 2;

            let mut vals_with_scratch = Vec::with_capacity(input_len);

            // put the image values in [..width * height] and provide scratch space
            vals_with_scratch.extend(img_vals.into_iter().map(|x| x as f32));
            // TODO: compare with `.set_len()`
            vals_with_scratch.resize(input_len, 0.);

            let hash_vals = dct_ctxt.dct_2d(vals_with_scratch);
            HashVals::Floats(dct_ctxt.crop_2d(hash_vals))
        } else {
            let img = imageops::resize(img, width, height, self.resize_filter);
            HashVals::Bytes(img.into_vec())
        }
    }
}

/// A struct representing an image processed by a perceptual hash.
/// For efficiency, does not retain a copy of the image data after hashing.
///
/// Get an instance with `ImageHash::hash()`.
#[derive(PartialEq, Eq, Hash, Debug, Clone)]
pub struct ImageHash<B = Box<[u8]>> {
    hash: B,
    __backcompat: (),
}

/// Error that can happen constructing a `ImageHash` from bytes.
#[derive(Debug, PartialEq)]
pub enum InvalidBytesError {
    /// Byte slice passed to `from_bytes` was the wrong length.
    BytesWrongLength {
        /// Number of bytes the `ImageHash` type expected.
        expected: usize,
        /// Number of bytes found when parsing the hash bytes.
        found: usize,
    },
    /// String passed was not valid base64.
    Base64(base64::DecodeError)
}

impl<B: HashBytes> ImageHash<B> {
    /// Get the bytes of this hash.
    pub fn as_bytes(&self) -> &[u8] { self.hash.as_slice() }

    /// Create an `ImageHash` instance from the given bytes.
    ///
    /// ## Errors:
    /// Returns a `InvalidBytesError::BytesWrongLength` error if the slice passed can't fit in `B`.
    pub fn from_bytes(bytes: &[u8]) -> Result<ImageHash<B>, InvalidBytesError> {
        if bytes.len() * 8 > B::max_bits() {
            return Err(InvalidBytesError::BytesWrongLength {
                expected: B::max_bits() / 8,
                found: bytes.len(),
            });
        }

        Ok(ImageHash {
            hash: B::from_iter(bytes.iter().copied()),
            __backcompat: (),
        })
    }

    /// Calculate the Hamming distance between this and `other`.
    ///
    /// Equivalent to counting the 1-bits of the XOR of the two hashes.
    /// 
    /// Essential to determining the perceived difference between `self` and `other`.
    ///
    /// ### Note
    /// This return value is meaningless if these two hashes are from different hash sizes or
    /// algorithms.
    pub fn dist(&self, other: &Self) -> u32 {
        BitSet::hamming(&self.hash, &other.hash)
    }

    /// Create an `ImageHash` instance from the given Base64-encoded string.
    ///
    /// ## Errors:
    /// Returns `InvaidBytesError::Base64(DecodeError::InvalidLength)` if the string wasn't valid base64`.
    /// Otherwise returns the same errors as `from_bytes`.
    pub fn from_base64(encoded_hash: &str) -> Result<ImageHash<B>, InvalidBytesError>{
        let bytes = base64::decode(encoded_hash).map_err(InvalidBytesError::Base64)?;

        Self::from_bytes(&bytes)
    }

    /// Get a Base64 string representing the bits of this hash.
    ///
    /// Mostly for printing convenience.
    pub fn to_base64(&self) -> String {
        base64::encode(self.hash.as_slice())
    }
}

/// Provide Serde a typedef for `image::FilterType`: https://serde.rs/remote-derive.html
/// This is automatically checked, if Serde complains then double-check with the original definition
#[derive(Serialize, Deserialize)]
#[serde(remote = "FilterType")]
enum SerdeFilterType {
    Nearest,
    Triangle,
    CatmullRom,
    Gaussian,
    Lanczos3,
}

fn debug_filter_type(ft: &FilterType) -> &'static str {
    use FilterType::*;

    match *ft {
        Triangle => "Triangle",
        Nearest => "Nearest",
        CatmullRom => "CatmullRom",
        Lanczos3 => "Lanczos3",
        Gaussian => "Gaussian",
    }
}

/*
#[cfg(test)]
mod test {
    extern crate rand;

    use serialize::base64::*;

    use image::{Rgba, ImageBuffer};

    use self::rand::{weak_rng, Rng};

    use super::{DCT2DFunc, HashType, ImageHash};

    type RgbaBuf = ImageBuffer<Rgba<u8>, Vec<u8>>;

    fn gen_test_img(width: u32, height: u32) -> RgbaBuf {
        let len = (width * height * 4) as usize;
        let mut buf = Vec::with_capacity(len);
        unsafe { buf.set_len(len); } // We immediately fill the buffer.
        weak_rng().fill_bytes(&mut *buf);

        ImageBuffer::from_raw(width, height, buf).unwrap()
    }

    macro_rules! test_hash_equality {
        ($fnname:ident, $size:expr, $type:ident) => {
            #[test]
            fn $fnname() {
                // square, powers of two
                test_hash_equality!(1024, 1024, $size, $type);
                // rectangular, powers of two
                test_hash_equality!(512, 256, $size, $type);
                // odd size, square
                test_hash_equality!(967, 967, $size, $type);
                // odd size, rectangular
                test_hash_equality!(967, 1023, $size, $type);
            }
        };
        ($width:expr, $height:expr, $size:expr, $type:ident) => {{
            let test_img = gen_test_img($width, $height);
            let hash1 = ImageHash::hash(&test_img, $size, HashType::$type);
            let hash2 = ImageHash::hash(&test_img, $size, HashType::$type);
            assert_eq!(hash1, hash2);
        }};
    }

    macro_rules! test_hash_type {
        ($type:ident, $modname:ident) => {
            mod $modname {
                use {HashType, ImageHash};
                use super::*;

                test_hash_equality!(hash_eq_8, 8, $type);
                test_hash_equality!(hash_eq_16, 16, $type);
                test_hash_equality!(hash_eq_32, 32, $type);
            }
        }
    }

    test_hash_type!(Mean, mean);
    test_hash_type!(Block, blockhash);
    test_hash_type!(Gradient, gradient);
    test_hash_type!(DoubleGradient, dbl_gradient);
    test_hash_type!(DCT, dct);

    #[test]
    fn dct_2d_equality() {
        fn dummy_dct(_ : &[f64], _: usize) -> Vec<f64> {
            unimplemented!();
        }

        let dct1 = DCT2DFunc(dummy_dct);
        let dct2 = DCT2DFunc(dummy_dct);

        assert_eq!(dct1, dct2);
    }

    #[test]
    fn dct_2d_inequality() {
        fn dummy_dct(_ : &[f64], _: usize) -> Vec<f64> {
            unimplemented!();
        }

        fn dummy_dct_2(_ : &[f64], _: usize) -> Vec<f64> {
            unimplemented!();
        }

        let dct1 = DCT2DFunc(dummy_dct);
        let dct2 = DCT2DFunc(dummy_dct_2);

        assert_ne!(dct1, dct2);
    }

    #[test]
    fn size() {
        let test_img = gen_test_img(1024, 1024);
        let hash = ImageHash::hash(&test_img, 32, HashType::Mean);
        assert_eq!(32*32, hash.size());
    }

    #[test]
    fn base64_encoding_decoding() {
        let test_img = gen_test_img(1024, 1024);
        let hash1 = ImageHash::hash(&test_img, 32, HashType::Mean);

        let base64_string = hash1.to_base64();
        let decoded_result = ImageHash::from_base64(&*base64_string);

        assert_eq!(decoded_result.unwrap(), hash1);
    }  

    #[test]
    fn base64_error_on_empty() {
        let decoded_result = ImageHash::from_base64("");
        match decoded_result {
            Err(InvalidBase64Length) => (),
            _ => panic!("Expected a invalid length error")
        };
    }

    #[cfg(feature = "bench")]
    mod bench {
        use super::gen_test_img;
        use super::rand::{thread_rng, Rng};

        extern crate test;

        use ::{HashType, ImageHash};
        
        use self::test::Bencher;

        const BENCH_HASH_SIZE: u32 = 8;
        const TEST_IMAGE_SIZE: u32 = 64;

        fn bench_hash(b: &mut Bencher, hash_type: HashType) {
            let test_img = gen_test_img(TEST_IMAGE_SIZE, TEST_IMAGE_SIZE);
        
            b.iter(|| ImageHash::hash(&test_img, BENCH_HASH_SIZE, hash_type));
        }

        macro_rules! bench_hash {
            ($bench_fn:ident : $hash_type:expr) => (
                #[bench]
                fn $bench_fn(b: &mut Bencher) {
                    bench_hash(b, $hash_type);
                }
            )
        }

        bench_hash! { bench_mean_hash : HashType::Mean }
        bench_hash! { bench_gradient_hash : HashType::Gradient }
        bench_hash! { bench_dbl_gradient_hash : HashType::DoubleGradient }
        bench_hash! { bench_block_hash: HashType::Block }


        #[bench]
        fn bench_dct_hash(b: &mut Bencher) {
            ::dct::clear_precomputed_matrix();
            bench_hash(b, HashType::DCT);
        }

        #[bench]
        fn bench_dct_hash_precomp(b: &mut Bencher) {
            ::precompute_dct_matrix(BENCH_HASH_SIZE);
            bench_hash(b, HashType::DCT);
        }

        #[bench]
        fn bench_dct_1d(b: &mut Bencher) {
            const ROW_LEN: usize = 8;
            let mut test_vals = [0f64; ROW_LEN];

            fill_rand(&mut test_vals);

            let mut output = [0f64;  ROW_LEN];

            ::dct::clear_precomputed_matrix();

            // Explicit slicing is necessary
            b.iter(|| ::dct::dct_1d(&test_vals[..], &mut output[..], ROW_LEN));
        
            test::black_box(&output);
        }

        #[bench]
        fn bench_dct_1d_precomp(b: &mut Bencher) {
            const ROW_LEN: usize = 8;
            let mut test_vals = [0f64; ROW_LEN];

            fill_rand(&mut test_vals);

            let mut output = [0f64;  ROW_LEN];

            ::dct::precomp_exact(ROW_LEN as u32);

            // Explicit slicing is necessary
            b.iter(|| ::dct::dct_1d(&test_vals[..], &mut output[..], ROW_LEN));

            test::black_box(&output);
        }

        #[bench]
        fn bench_dct_2d(b: &mut Bencher) {
            const ROWSTRIDE: usize = 8;
            const LEN: usize = ROWSTRIDE * ROWSTRIDE;

            let mut test_vals = [0f64; LEN];

            fill_rand(&mut test_vals);

            ::dct::clear_precomputed_matrix();

            b.iter(|| ::dct::dct_2d(&test_vals[..], ROWSTRIDE));
        }

        #[bench]
        fn bench_dct_2d_precomp(b: &mut Bencher) {
            const ROWSTRIDE: usize = 8;
            const LEN: usize = ROWSTRIDE * ROWSTRIDE;

            let mut test_vals = [0f64; LEN];

            fill_rand(&mut test_vals);

            ::dct::precomp_exact(ROWSTRIDE as u32);

            b.iter(|| ::dct::dct_2d(&test_vals[..], ROWSTRIDE));
        }

        #[inline(never)]
        fn fill_rand(out: &mut [f64]) {
            let mut rng = thread_rng();

            for (val, out) in rng.gen_iter().zip(out) {
                *out = val;
            }
        }
    }
}
*/