1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
use num::{Num, NumCast};
use std::ops::{Add, AddAssign, Sub, SubAssign};
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Point<T> {
pub x: T,
pub y: T,
}
impl<T> Point<T> {
pub fn new(x: T, y: T) -> Point<T> {
Point::<T> { x, y }
}
}
impl<T: Num> Add for Point<T> {
type Output = Self;
fn add(self, other: Point<T>) -> Point<T> {
Point::new(self.x + other.x, self.y + other.y)
}
}
impl<T: Num + Copy> AddAssign for Point<T> {
fn add_assign(&mut self, rhs: Self) {
self.x = self.x + rhs.x;
self.y = self.y + rhs.y;
}
}
impl<T: Num> Sub for Point<T> {
type Output = Self;
fn sub(self, other: Point<T>) -> Point<T> {
Point::new(self.x - other.x, self.y - other.y)
}
}
impl<T: Num + Copy> SubAssign for Point<T> {
fn sub_assign(&mut self, rhs: Self) {
self.x = self.x - rhs.x;
self.y = self.y - rhs.y;
}
}
impl<T: NumCast> Point<T> {
pub(crate) fn to_f64(&self) -> Point<f64> {
Point::new(self.x.to_f64().unwrap(), self.y.to_f64().unwrap())
}
pub(crate) fn to_i32(&self) -> Point<i32> {
Point::new(self.x.to_i32().unwrap(), self.y.to_i32().unwrap())
}
}
pub(crate) fn distance<T: NumCast>(p: Point<T>, q: Point<T>) -> f64 {
distance_sq(p, q).sqrt()
}
pub(crate) fn distance_sq<T: NumCast>(p: Point<T>, q: Point<T>) -> f64 {
let p = p.to_f64();
let q = q.to_f64();
(p.x - q.x).powf(2.0) + (p.y - q.y).powf(2.0)
}
#[derive(Debug, Copy, Clone, PartialEq)]
pub(crate) struct Rotation {
sin_theta: f64,
cos_theta: f64,
}
impl Rotation {
pub(crate) fn new(theta: f64) -> Rotation {
let (sin_theta, cos_theta) = theta.sin_cos();
Rotation {
sin_theta,
cos_theta,
}
}
}
impl Point<f64> {
pub(crate) fn rotate(&self, rotation: Rotation) -> Point<f64> {
let x = self.x * rotation.cos_theta + self.y * rotation.sin_theta;
let y = self.y * rotation.cos_theta - self.x * rotation.sin_theta;
Point::new(x, y)
}
pub(crate) fn invert_rotation(&self, rotation: Rotation) -> Point<f64> {
let x = self.x * rotation.cos_theta - self.y * rotation.sin_theta;
let y = self.y * rotation.cos_theta + self.x * rotation.sin_theta;
Point::new(x, y)
}
}
#[derive(Debug, Copy, Clone, PartialEq)]
pub(crate) struct Line {
a: f64,
b: f64,
c: f64,
}
impl Line {
pub fn from_points(p: Point<f64>, q: Point<f64>) -> Line {
let a = p.y - q.y;
let b = q.x - p.x;
let c = p.x * q.y - q.x * p.y;
Line { a, b, c }
}
pub fn distance_from_point(&self, point: Point<f64>) -> f64 {
let Line { a, b, c } = self;
(a * point.x + b * point.y + c).abs() / (a.powf(2.0) + b.powf(2.)).sqrt()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn line_from_points() {
let p = Point::new(5.0, 7.0);
let q = Point::new(10.0, 3.0);
assert_eq!(
Line::from_points(p, q),
Line {
a: 4.0,
b: 5.0,
c: -55.0
}
);
}
#[test]
fn distance_between_line_and_point() {
assert_approx_eq!(
Line {
a: 8.0,
b: 7.0,
c: 5.0
}
.distance_from_point(Point::new(2.0, 3.0)),
3.9510276472,
1e-10
);
}
}