1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
use std::ops;

use crate::{Color, Type};

pub mod colorspace {
    pub use palette::*;
}

/// Pixel is used to access chunks of image data
pub trait Pixel<'a, T: Type, C: Color>: AsRef<[T]> {
    /// Create a new Vec<T> from existing pixel data
    fn to_vec(&self) -> Vec<T> {
        self.as_ref().iter().map(|x| x.clone()).collect()
    }

    /// Create a new Vec<f64> of normalized values from existing pixel data
    fn to_f(&self) -> Vec<f64> {
        self.as_ref().iter().map(|x| T::to_f(x)).collect()
    }

    /// Create a new PixelVec<T> from existing pixel data
    fn to_pixel_vec(&self) -> PixelVec<T> {
        PixelVec::from_pixel(self)
    }

    /// Create a new PixelVec<f64> of normalized values from existing pixel data
    fn to_pixel_vec_f(&self) -> PixelVec<f64> {
        PixelVec::from_pixel(self).to_f()
    }

    /// Returns true when every value is > 0
    fn is_true(&self) -> bool {
        self.as_ref().iter().all(|x| *x != T::zero())
    }

    /// Returns true when every value == 0
    fn is_false(&self) -> bool {
        self.as_ref().iter().all(|x| *x == T::zero())
    }

    /// Create a new PixelVec by executing `f` for each channel
    fn map<F: FnMut(&T) -> T>(&self, mut f: F) -> PixelVec<T> {
        let mut dest: PixelVec<T> = PixelVec::empty();
        let data = self.as_ref();
        for (i, item) in data.iter().enumerate() {
            (dest.0)[i] = f(item)
        }
        dest
    }

    fn iter(&self) -> std::slice::Iter<T> {
        self.as_ref().iter()
    }

    fn to_rgb(&self) -> colorspace::LinSrgb {
        let data = self.as_ref();
        palette::LinSrgb::new(
            data[0].to_f() as f32,
            data[1].to_f() as f32,
            data[2].to_f() as f32,
        )
    }

    fn from_rgb(px: colorspace::rgb::Rgb) -> PixelVec<f64> {
        PixelVec::new(px.red as f64, px.green as f64, px.blue as f64, 1.0)
    }

    fn to_rgba(&self) -> colorspace::LinSrgba {
        let data = self.as_ref();
        palette::LinSrgba::new(
            data[0].to_f() as f32,
            data[1].to_f() as f32,
            data[2].to_f() as f32,
            data[3].to_f() as f32,
        )
    }

    fn from_rgba(px: colorspace::rgb::Rgba) -> PixelVec<f64> {
        PixelVec::new(
            px.red as f64,
            px.green as f64,
            px.blue as f64,
            px.alpha as f64,
        )
    }

    fn to_luma(&self) -> colorspace::LinLuma {
        let data = self.as_ref();
        palette::luma::Luma::new(data[0].to_f() as f32)
    }

    fn from_luma(px: colorspace::luma::Luma) -> PixelVec<f64> {
        PixelVec::new_gray(px.luma as f64)
    }

    fn to_hsv(&self) -> colorspace::Hsv {
        colorspace::Hsv::from(self.to_rgb())
    }

    fn from_hsv(px: colorspace::Hsv) -> PixelVec<f64> {
        let px = colorspace::rgb::Rgb::from(px);
        Self::from_rgb(px)
    }

    fn to_lab(&self) -> colorspace::Lab {
        colorspace::Lab::from(self.to_rgb())
    }

    fn from_lab(px: colorspace::Lab) -> PixelVec<f64> {
        let px = colorspace::rgb::Rgb::from(px);
        Self::from_rgb(px)
    }
}

/// PixelMut is used to access mutable chunks of image data
pub trait PixelMut<'a, T: Type, C: Color>: Pixel<'a, T, C> + AsMut<[T]> {
    /// Copy values from a normalized f64 pixel
    fn set_f<P: Pixel<'a, f64, C>>(&mut self, other: &P) {
        let a = self.as_mut().iter_mut();
        let b = other.as_ref().iter();
        a.zip(b).for_each(|(x, y)| *x = T::from_f(*y))
    }

    /// Copy values from another pixel
    fn set<P: Pixel<'a, T, C>>(&mut self, other: &P) {
        let a = self.as_mut().iter_mut();
        let b = other.as_ref().iter();
        a.zip(b).for_each(|(x, y)| *x = *y)
    }

    fn iter_mut(&mut self) -> std::slice::IterMut<T> {
        self.as_mut().iter_mut()
    }

    fn blend_alpha(&mut self) {
        if !C::has_alpha() {
            return;
        }

        let len = C::channels();

        let alpha = T::to_float(&self.as_ref()[len - 1]) / T::max_f();
        let data = self.as_mut();

        for i in 0..len - 1 {
            data[i] = T::from_float(T::to_float(&data[i]) * alpha);
        }

        data[len - 1] = T::max();
    }
}

impl<'a, T: Type, C: Color> Pixel<'a, T, C> for &'a [T] {}
impl<'a, T: Type, C: Color> Pixel<'a, T, C> for &'a mut [T] {}
impl<'a, T: Type, C: Color> PixelMut<'a, T, C> for &'a mut [T] {}
impl<'a, T: Type, C: Color> Pixel<'a, T, C> for Vec<T> {}
impl<'a, T: Type, C: Color> PixelMut<'a, T, C> for Vec<T> {}
impl<'a, T: Type, C: Color> Pixel<'a, T, C> for &'a Vec<T> {}
impl<'a, T: Type, C: Color> Pixel<'a, T, C> for &'a mut Vec<T> {}
impl<'a, T: Type, C: Color> PixelMut<'a, T, C> for &'a mut Vec<T> {}

/// PixelVec is a 4-channel pixel backed by a static array
#[cfg_attr(feature = "ser", derive(serde::Serialize, serde::Deserialize))]
#[derive(Debug, Clone, Copy)]
pub struct PixelVec<T: Type>([T; 4]);

impl<T: Type> PixelVec<T> {
    /// Create a new PixelVec, each channel set to 0
    pub fn empty() -> PixelVec<T> {
        PixelVec([T::zero(); 4])
    }

    /// Create a new PixelVec with the given values
    pub fn new(a: T, b: T, c: T, d: T) -> PixelVec<T> {
        PixelVec([a, b, c, d])
    }

    /// Create a new PixelBec with every channel set to the given value. The alpha channel is set
    /// to `T::max()`
    pub fn new_gray(a: T) -> PixelVec<T> {
        PixelVec([a, a, a, T::max()])
    }

    /// Create a new PixelVec from an existing Pixel
    pub fn from_pixel<P: AsRef<[T]>>(pixel: P) -> PixelVec<T> {
        let data: &[T] = pixel.as_ref();
        let len = data.len();

        if len == 0 {
            PixelVec::empty()
        } else if len == 1 {
            let d0 = data[0];
            PixelVec::new(d0, d0, d0, T::max())
        } else if len == 2 {
            let d0 = data[0];
            let d1 = data[1];
            PixelVec::new(d0, d1, T::min(), T::max())
        } else if len == 3 {
            let d0 = data[0];
            let d1 = data[1];
            let d2 = data[2];
            PixelVec::new(d0, d1, d2, T::max())
        } else {
            let d0 = data[0];
            let d1 = data[1];
            let d2 = data[2];
            let d3 = data[3];
            PixelVec::new(d0, d1, d2, d3)
        }
    }

    /// Create a new PixelVec by mapping `f` over an existing PixelVec
    pub fn map<U: Type, F: Fn(&T) -> U>(&self, f: F) -> PixelVec<U> {
        let mut vec = PixelVec::empty();
        for i in 0..4 {
            vec.0[i] = f(&self.0[i])
        }
        vec
    }

    /// Convert from `PixelVec<T>` to `Vec<T>`
    pub fn to_vec<C: Color>(&self) -> Vec<T> {
        let mut vec = self.0.to_vec();
        vec.truncate(C::channels());
        vec
    }

    /// Convert from `PixelVec<T>` to `Vec<f64>` and normalize values
    pub fn to_vec_f<C: Color>(&self) -> Vec<f64> {
        let mut vec: Vec<f64> = self.0.to_vec().into_iter().map(|x| T::to_f(&x)).collect();
        vec.truncate(C::channels());
        vec
    }

    /// Convert from `PixelVec<T>` to `PixelVec<f64>`
    pub fn to_float(&self) -> PixelVec<f64> {
        self.map(|x| T::to_float(x))
    }

    /// Convert from `PixelVec<T>` to `PixelVec<f64>` and normalize values
    pub fn to_f(&self) -> PixelVec<f64> {
        self.map(|x| T::to_f(x))
    }
}

impl<T: Type> AsRef<[T]> for PixelVec<T> {
    fn as_ref(&self) -> &[T] {
        &self.0
    }
}

impl<T: Type> AsMut<[T]> for PixelVec<T> {
    fn as_mut(&mut self) -> &mut [T] {
        &mut self.0
    }
}

impl<'a, T: Type, C: Color> Pixel<'a, T, C> for PixelVec<T> {}
impl<'a, T: Type, C: Color> PixelMut<'a, T, C> for PixelVec<T> {}

macro_rules! pixelvec_op {
    ($name:ident, $fx:ident, $f:expr) => {
        impl<T: Type> ops::$name for PixelVec<T> {
            type Output = PixelVec<T>;

            fn $fx(mut self, other: Self) -> Self::Output {
                for i in 0..4 {
                    self.0[i] = $f(self.0[i], other.0[i]);
                }
                self
            }
        }

        impl<'a, T: Type> ops::$name for &'a PixelVec<T> {
            type Output = PixelVec<T>;

            fn $fx(self, other: Self) -> Self::Output {
                let mut dest = PixelVec::empty();
                for i in 0..4 {
                    dest.0[i] = $f(self.0[i], other.0[i]);
                }
                self.clone()
            }
        }
    };
}

macro_rules! pixelvec_op_assign {
    ($name:ident, $fx:ident, $f:expr) => {
        impl<T: Type> ops::$name for PixelVec<T> {
            fn $fx(&mut self, other: Self) {
                for i in 0..4 {
                    self.0[i] = $f(self.0[i], other.0[i]);
                }
            }
        }

        impl<'a, T: Type> ops::$name for &'a mut PixelVec<T> {
            fn $fx(&mut self, other: Self) {
                for i in 0..4 {
                    self.0[i] = $f(self.0[i], other.0[i]);
                }
            }
        }
    };
}

pixelvec_op!(Add, add, |a, b| a + b);
pixelvec_op_assign!(AddAssign, add_assign, |a: T, b: T| a + b);
pixelvec_op!(Sub, sub, |a, b| a - b);
pixelvec_op_assign!(SubAssign, sub_assign, |a, b| a - b);
pixelvec_op!(Mul, mul, |a, b| a * b);
pixelvec_op_assign!(MulAssign, mul_assign, |a, b| a * b);
pixelvec_op!(Div, div, |a, b| a / b);
pixelvec_op_assign!(DivAssign, div_assign, |a, b| a / b);
pixelvec_op!(Rem, rem, |a, b| a % b);
pixelvec_op_assign!(RemAssign, rem_assign, |a, b| a % b);