1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
//! Decoding and Encoding of PNG Images
//!
//! PNG (Portable Network Graphics) is an image format that supports lossless compression.
//!
//! # Related Links
//! * <http://www.w3.org/TR/PNG/> - The PNG Specification
//!

extern crate png;

use std::io::{self, Read, Write};

use color::ColorType;
use image::{ImageDecoder, ImageError, ImageResult};

/// PNG Reader
///
/// This reader will try to read the png one row at a time,
/// however for interlaced png files this is not posible and
/// these are therefore readed at once.
pub struct PNGReader<R: Read> {
    reader: png::Reader<R>,
    buffer: Vec<u8>,
    index: usize,
}

impl<R: Read> PNGReader<R> {
    fn new(mut reader: png::Reader<R>) -> ImageResult<PNGReader<R>> {
        let len = reader.output_buffer_size();
        // Since interlaced images do not come in 
        // scanline order it is almost impossible to
        // read them in a streaming fashion, however
        // this shouldn't be a too big of a problem
        // as most interlaced images should fit in memory.
        let buffer = if reader.info().interlaced {
            let mut buffer = vec![0; len];
            reader.next_frame(&mut buffer)?;
            buffer
        } else {
            Vec::new()
        };

        Ok(PNGReader {
            reader,
            buffer,
            index: 0,
        })
    }
}

impl<R: Read> Read for PNGReader<R> {
    fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
        // io::Write::write for slice cannot fail
        let readed = buf.write(&self.buffer[self.index..]).unwrap();

        let mut bytes = readed;
        self.index += readed;
    
        while self.index + 1 >= self.buffer.len() {
            match self.reader.next_row()? {
                Some(row) => {
                    // Faster to copy directly to external buffer
                    let readed  = buf.write(row).unwrap();
                    bytes += readed;

                    self.buffer = (&row[readed..]).to_owned();
                    self.index = 0;
                }
                None => return Ok(bytes)
            }
        }

        Ok(bytes)
    }

    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
        let mut bytes = self.buffer.len();
        buf.extend_from_slice(&self.buffer);
        self.buffer = Vec::new();
        self.index = 0;
    
        while let Some(row) = self.reader.next_row()? {
            buf.extend_from_slice(row);
            bytes += row.len();
        }

        Ok(bytes)
    }
}

/// PNG decoder
pub struct PNGDecoder<R: Read> {
    colortype: ColorType,
    reader: png::Reader<R>,
}

impl<R: Read> PNGDecoder<R> {
    /// Creates a new decoder that decodes from the stream ```r```
    pub fn new(r: R) -> ImageResult<PNGDecoder<R>> {
        let limits = png::Limits {
            bytes: usize::max_value(),
        };
        let decoder = png::Decoder::new_with_limits(r, limits);
        let (_, mut reader) = decoder.read_info()?;
        let colortype = reader.output_color_type().into();

        Ok(PNGDecoder { colortype, reader })
    }
}

impl<'a, R: 'a + Read> ImageDecoder<'a> for PNGDecoder<R> {
    type Reader = PNGReader<R>;

    fn dimensions(&self) -> (u64, u64) {
        let (w, h) = self.reader.info().size();
        (w as u64, h as u64)
    }

    fn colortype(&self) -> ColorType {
        self.colortype
    }

    fn into_reader(self) -> ImageResult<Self::Reader> {
        PNGReader::new(self.reader)
    }

    fn read_image(mut self) -> ImageResult<Vec<u8>> {
        // This should be slightly faster than the default implementation
        let mut data = vec![0; self.reader.output_buffer_size()];
        self.reader.next_frame(&mut data)?;
        Ok(data)
    }

    fn scanline_bytes(&self) -> u64 {
        let width = self.reader.info().width;
        self.reader.output_line_size(width) as u64
    }
}

/// PNG encoder
pub struct PNGEncoder<W: Write> {
    w: W,
}

impl<W: Write> PNGEncoder<W> {
    /// Create a new encoder that writes its output to ```w```
    pub fn new(w: W) -> PNGEncoder<W> {
        PNGEncoder { w }
    }

    /// Encodes the image ```image```
    /// that has dimensions ```width``` and ```height```
    /// and ```ColorType``` ```c```
    pub fn encode(self, data: &[u8], width: u32, height: u32, color: ColorType) -> io::Result<()> {
        let (ct, bits) = color.into();
        let mut encoder = png::Encoder::new(self.w, width, height);
        encoder.set_color(ct);
        encoder.set_depth(bits);
        let mut writer = encoder.write_header()?;
        writer.write_image_data(data).map_err(|e| e.into())
    }
}

impl From<(png::ColorType, png::BitDepth)> for ColorType {
    fn from((ct, bits): (png::ColorType, png::BitDepth)) -> ColorType {
        use self::png::ColorType::*;
        let bits = bits as u8;
        match ct {
            Grayscale => ColorType::Gray(bits),
            RGB => ColorType::RGB(bits),
            Indexed => ColorType::Palette(bits),
            GrayscaleAlpha => ColorType::GrayA(bits),
            RGBA => ColorType::RGBA(bits),
        }
    }
}

impl From<ColorType> for (png::ColorType, png::BitDepth) {
    fn from(ct: ColorType) -> (png::ColorType, png::BitDepth) {
        use self::png::ColorType::*;
        let (ct, bits) = match ct {
            ColorType::Gray(bits) => (Grayscale, bits),
            ColorType::RGB(bits) => (RGB, bits),
            ColorType::Palette(bits) => (Indexed, bits),
            ColorType::GrayA(bits) => (GrayscaleAlpha, bits),
            ColorType::RGBA(bits) => (RGBA, bits),
            ColorType::BGRA(bits) => (RGBA, bits),
            ColorType::BGR(bits) => (RGB, bits),
        };
        (ct, png::BitDepth::from_u8(bits).unwrap())
    }
}

impl From<png::DecodingError> for ImageError {
    fn from(err: png::DecodingError) -> ImageError {
        use self::png::DecodingError::*;
        match err {
            IoError(err) => ImageError::IoError(err),
            Format(desc) => ImageError::FormatError(desc.into_owned()),
            InvalidSignature => ImageError::FormatError("invalid signature".into()),
            CrcMismatch { .. } => ImageError::FormatError("CRC error".into()),
            Other(desc) => ImageError::FormatError(desc.into_owned()),
            CorruptFlateStream => {
                ImageError::FormatError("compressed data stream corrupted".into())
            }
            LimitsExceeded => ImageError::InsufficientMemory,
        }
    }
}