1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
//! Quick to start, different and random Image operations. 
//! Feel free to contribute and add new features via a Pull Request.
//! # How to use
//! In Cargo.toml 
//! ```ignore
//! [dependencies]
//! image-toolbox = "*"
//! ```
//! # The histogram struct 
//! ```
//! use image_toolbox::{Histogram, load_img};
//! use image::{DynamicImage};
//! 
//! // load img 
//! let img = load_img("./test/bright_miami.jpg").unwrap();
//! let histogram = Histogram::new(&img);
//! println!("{:?}",histogram);
//! // get the r,g,b probability of some pixel value 
//! let (p_r,p_g,p_b) : (f32,f32,f32) = histogram.probability(200);
//! ```
//! # turn a TOO bright image into normal colors
//! ```ignore
//! use image_toolbox::{load_img,normalize_brightness,save_img};
//! 
//! let img = load_img("./test/bright_miami.jpg").unwrap();
//! let new_image = normalize_brightness(&img).unwrap();
//! save_img(&img,"./test/result.jpg").unwrap();
//! ```

extern crate image;
extern crate math;
use std::fmt;
use image::{GenericImage, ImageBuffer,RGB,GenericImageView, DynamicImage};
use image::imageops;
use std::cmp::{min, max};

/// used to represent pixel color type in Histogram struct
#[derive(Debug, Copy, Clone)]
pub enum Pix{
    R,G,B
}

/// Histogram representation of an image 
/// represents the distribution of Red,Green,Blue pixels in an image. 
pub struct Histogram{
    r_dist : Vec<f32>,
    g_dist : Vec<f32>,
    b_dist : Vec<f32>
}
impl fmt::Debug for Histogram {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let L = 256;
        write!(f,"\n----------------- RED -----------------\n");
        for i in 0..L{
            if self.r_dist[i] > 0.0{
                write!(f,"{} => {}\n", i, self.r_dist[i]);
            }
        }
        write!(f,"\n----------------- GREEN -----------------\n");
        for i in 0..L{
            if self.g_dist[i] > 0.0{
                write!(f,"{} => {}\n", i, self.g_dist[i]);
            }
        }
        write!(f,"\n----------------- BLUE -----------------\n");
        for i in 0..L{
            if self.b_dist[i] > 0.0{
                write!(f,"{} => {}\n", i, self.b_dist[i]);
            }
        }
        write!(f,"")
    }
}

impl Histogram{
    pub fn probability(&self,pix_val: u8)->(f32,f32,f32){
        (self.r_dist[pix_val as usize],self.g_dist[pix_val as usize],self.b_dist[pix_val as usize])
    }
    pub fn probability_of(&self,p : Pix, pix_val : u8)->f32{
        match p{
            R => self.r_dist[pix_val as usize], 
            G => self.g_dist[pix_val as usize], 
            B => self.b_dist[pix_val as usize], 
        }
    }
    pub fn new(img : & DynamicImage)->Self{
        let (width, height) = img.dimensions();
        let L = 256;
        let mut r_dist = vec![0f32;L];
        let mut g_dist = vec![0f32;L];
        let mut b_dist = vec![0f32;L];
        let sum : f32 = (width * height) as f32;
        for i in 0..width{
            for j in 0..height{
                let r_p = img.get_pixel(i,j).data[0];
                r_dist[r_p as usize] += 1.0;
                let g_p = img.get_pixel(i,j).data[1];
                g_dist[g_p as usize] += 1.0;
                let b_p = img.get_pixel(i,j).data[2];
                b_dist[b_p as usize] += 1.0;
            }
        }
        let mut sum_distros = 0.0;
        for i in 0..L{
            if r_dist[i] >= 1.0{
                r_dist[i] = r_dist[i] / sum;
                sum_distros += r_dist[i];
            }
            if g_dist[i] >= 1.0{
                g_dist[i] = g_dist[i] / sum;
            }
            if b_dist[i] >= 1.0{
                b_dist[i] = b_dist[i] / sum;
            }   
        }
        Histogram{
            r_dist: r_dist,
            g_dist: g_dist,
            b_dist: b_dist
        }
    }
}

pub fn transform_pixel(original_pixel : u8, colorType : Pix ,histogram :& Histogram)-> u8{
    let L = 256.0; 
    let new_pixel = 0; 
    let mut distros_sum = 0.0;
    let mut up_to = original_pixel as u32 +1;
    for i in 0..up_to{
        distros_sum += histogram.probability_of(colorType, i as u8);
    }
    ((L-1.0) * distros_sum) as u8
}
/// turn a very bright image into a normal looking one by using histogram equalization.
/// ```
/// use image_toolbox::{transform_from_histogram,Histogram};
/// use image::{DynamicImage};
/// 
/// // make a new 500X500 image 
/// let img = DynamicImage::new_rgba8(500,500); 
/// let histogram = Histogram::new(&img);
/// let new_image = transform_from_histogram(&img, &histogram);
/// ```
pub fn transform_from_histogram(img : &DynamicImage, hist : &Histogram)->DynamicImage{
    let (w,h) = img.dimensions();
    let mut new_img = DynamicImage::new_rgba8(w, h);
    for i in 0..w{
        for j in 0..h{
            let pixel = img.get_pixel(i, j);
            let mut r = pixel.data[0];
            let mut g = pixel.data[1];
            let mut b = pixel.data[2];
            r = transform_pixel(r, Pix::R, hist);
            g = transform_pixel(g, Pix::G, hist);
            b = transform_pixel(b, Pix::B, hist);
            let transformed_pixel = image::Rgba([r,g,b,pixel.data[3]]);
            new_img.put_pixel(i,j, transformed_pixel);
        }
    }
    new_img
}
/// Load any type of image uses `DynamicImage` type. 
/// ```
/// use image_toolbox::{load_img};
/// 
/// let img = load_img("./test/bright_miami.jpg").unwrap();
/// ```
pub fn load_img(path : &str)->Result<DynamicImage,image::ImageError>{
    let im = image::open(path)?;
    Ok(im)
}
/// Save an image to disk 
/// ```
/// use image_toolbox::{save_img};
/// use image::{DynamicImage};
/// 
/// // make a new 500X500 image 
/// let img = DynamicImage::new_rgba8(500,500); 
/// // save the image 
/// save_img(&img,"./test/empty_img.jpg").unwrap();
/// ```
pub fn save_img(img : &DynamicImage, path : &str)->Result<(),std::io::Error>{
    img.save(path)?;
    Ok(())
}
/// transform a very bright image into normal brightness based on histogram equalization
/// wrapper for `transform_from_histogram` function. 
/// ```
/// use image_toolbox::{load_img,normalize_brightness};
/// 
/// let img = load_img("./test/bright_miami.jpg").unwrap();
/// let new_image = normalize_brightness(&img).unwrap();
/// // save_img(&img,"./test/result.jpg").unwrap();
/// ```
pub fn normalize_brightness(img : &DynamicImage)->Result<DynamicImage,()>{
        let histogram = Histogram::new(img);
        let new_image = transform_from_histogram(&img, &histogram);
        Ok(new_image)
}

#[cfg(test)]
mod tests {
    use super::*;
    fn equals(img1 : &DynamicImage, img2 :&  DynamicImage)->bool{
        let (w1,h1) = img1.dimensions();
        let (w2,h2) = img2.dimensions();
        // compare image dimensions 
        if w1 != w2 || h1 != h2 {
            return false;
        }
        for i in 0..w1{
            for j in 0..h1{
                let p1 = img1.get_pixel(i, j);
                let r1 = p1.data[0];
                let g1 = p1.data[1];
                let b1 = p1.data[2];
                let a1 = p1.data[3];
                let p2 = img2.get_pixel(i, j);
                let r2 = p1.data[0];
                let g2 = p1.data[1];
                let b2 = p1.data[2];
                let a2 = p1.data[3];
                if r1 != r2 || g1 != g2 || b1 != b2 || a1 != a2{
                    return false;
                }
            }
        }
        true
    }
    #[test]
    fn perform_histogram_equalization() {
        let path = "./test/bright_miami.jpg";
        let img = image::open(path).unwrap();
        let histogram = Histogram::new(&img);
        let new_image = transform_from_histogram(&img, &histogram);
        // verify 
        let test_img = image::open("./test/normalized_miami.jpg").unwrap();
        assert!(equals(&test_img, &new_image),"image not equal");
    }
}