1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
#![crate_name = "image_compare"]
//! # Comparing gray images using structure
//! This crate allows to compare grayscale images using either structure or histogramming methods.
//! The easiest use is loading two images, converting them to grayscale and running a comparison:
//! ```no_run
//! use image_compare::Algorithm;
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_luma8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_luma8();
//! let result = image_compare::gray_similarity_structure(&Algorithm::MSSIMSimple, &image_one, &image_two).expect("Images had different dimensions");
//! ```
//! Check the [`Algorithm`] enum for implementation details
//!
//! # Comparing gray images using histogram
//!
//! Histogram comparisons are possible using the histogram comparison function
//! ```no_run
//! use image_compare::Metric;
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_luma8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_luma8();
//! let result = image_compare::gray_similarity_histogram(Metric::Hellinger, &image_one, &image_two).expect("Images had different dimensions");
//! ```
//! Check the [`Metric`] enum for implementation details
//!
//! # Comparing rgb images using hybrid mode
//!
//! hybrid mode allows to decompose the image to structure and color channels (YUV) which
//! are compared separately but then combined into a common result.
//! ## Direct usage on two RGB8 images
//! ```no_run
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_rgb8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_rgb8();
//! let result = image_compare::rgb_hybrid_compare(&image_one, &image_two).expect("Images had different dimensions");
//! ```
//!
//! ## Compare the similarity of two maybe-rgba images in front a given background color
//! If an image is RGBA it will be blended with a background of the given color.
//! RGB images will not be modified.
//!
//! ```no_run
//! use image::Rgb;
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_rgba8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_rgb8();
//! let white = Rgb([255,255,255]);
//! let result = image_compare::rgba_blended_hybrid_compare((&image_one).into(), (&image_two).into(), white).expect("Images had different dimensions");
//! ```
//!
//! # Comparing two RGBA8 images using hybrid mode
//!
//! hybrid mode allows to decompose the image to structure, color and alpha channels (YUVA) which
//! are compared separately but then combined into a common result.
//! ```no_run
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_rgba8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_rgba8();
//! let result = image_compare::rgba_hybrid_compare(&image_one, &image_two).expect("Images had different dimensions");
//! ```
//!
//! # Using structure results
//! All structural comparisons return a result struct that contains the similarity score.
//! For the score 1.0 is perfectly similar, 0.0 is dissimilar and some algorithms even provide up to -1.0 for inverse.
//! Furthermore, the algorithm may produce a similarity map (MSSIM, RMS and hybrid compare do) that can be evaluated per pixel or converted to a visualization:
//! ```no_run
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_rgba8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_rgba8();
//! let result = image_compare::rgba_hybrid_compare(&image_one, &image_two).expect("Images had different dimensions");
//! if result.score < 0.95 {
//! let diff_img = result.image.to_color_map();
//! diff_img.save("diff_image.png").expect("Could not save diff image");
//! }
//! ```
#![warn(missing_docs)]
#![warn(unused_qualifications)]
#![deny(deprecated)]
mod colorization;
mod histogram;
mod hybrid;
mod squared_error;
mod ssim;
mod utils;
#[doc(hidden)]
pub mod prelude {
pub use image::{GrayImage, ImageBuffer, Luma, Rgb, RgbImage};
use thiserror::Error;
/// The enum for selecting a grayscale comparison implementation
pub enum Algorithm {
/// A simple RMSE implementation - will return: <img src="https://render.githubusercontent.com/render/math?math=1-\sqrt{\frac{(\sum_{x,y=0}^{x,y=w,h}\left(f(x,y)-g(x,y)\right)^2)}{w*h}}">
RootMeanSquared,
/// a simple MSSIM implementation - will run SSIM (implemented as on wikipedia: <img src="https://render.githubusercontent.com/render/math?math=\mathrm{SSIM}(x,y)={\frac {(2\mu _{x}\mu _{y}+c_{1})(2\sigma _{xy}+c_{2})}{(\mu _{x}^{2}+\mu _{y}^{2}+c_{1})(\sigma _{x}^{2}+\sigma _{y}^{2}+c_{2})}}"> ) over 8x8 px windows and average the results
MSSIMSimple,
}
#[derive(Error, Debug)]
/// The errors that can occur during comparison of the images
pub enum CompareError {
#[error("The dimensions of the input images are not identical")]
DimensionsDiffer,
#[error("Comparison calculation failed: {0}")]
CalculationFailed(String),
}
pub use crate::colorization::GraySimilarityImage;
pub use crate::colorization::RGBASimilarityImage;
pub use crate::colorization::RGBSimilarityImage;
pub use crate::colorization::Similarity;
}
#[doc(inline)]
pub use histogram::Metric;
#[doc(inline)]
pub use prelude::Algorithm;
#[doc(inline)]
pub use prelude::CompareError;
#[doc(inline)]
pub use prelude::Similarity;
use prelude::*;
use utils::Decompose;
/// Comparing gray images using structure.
///
/// # Arguments
///
/// * `algorithm` - The comparison algorithm to use
///
/// * `first` - The first of the images to compare
///
/// * `second` - The first of the images to compare
pub fn gray_similarity_structure(
algorithm: &Algorithm,
first: &GrayImage,
second: &GrayImage,
) -> Result<Similarity, CompareError> {
if first.dimensions() != second.dimensions() {
return Err(CompareError::DimensionsDiffer);
}
match algorithm {
Algorithm::RootMeanSquared => root_mean_squared_error_simple(first, second),
Algorithm::MSSIMSimple => ssim_simple(first, second),
}
.map(|(score, i)| Similarity {
image: i.into(),
score,
})
}
/// Comparing rgb images using structure.
/// RGB structure similarity is performed by doing a channel split and taking the maximum deviation (minimum similarity) for the result.
/// The image contains the complete deviations.
/// # Arguments
///
/// * `algorithm` - The comparison algorithm to use
///
/// * `first` - The first of the images to compare
///
/// * `second` - The first of the images to compare
///
/// ### Experimental:
/// As you can see from the pinning tests in cucumber - the differences are quite small, the runtime difference is rather large though.
pub fn rgb_similarity_structure(
algorithm: &Algorithm,
first: &RgbImage,
second: &RgbImage,
) -> Result<Similarity, CompareError> {
if first.dimensions() != second.dimensions() {
return Err(CompareError::DimensionsDiffer);
}
let first_channels = first.split_channels();
let second_channels = second.split_channels();
let mut results = Vec::new();
for channel in 0..3 {
match algorithm {
Algorithm::RootMeanSquared => {
results.push(root_mean_squared_error_simple(
&first_channels[channel],
&second_channels[channel],
)?);
}
Algorithm::MSSIMSimple => {
results.push(ssim_simple(
&first_channels[channel],
&second_channels[channel],
)?);
}
}
}
let input = results.iter().map(|(_, i)| i).collect::<Vec<_>>();
let image = utils::merge_similarity_channels(&input.try_into().unwrap());
let score = results.iter().map(|(s, _)| *s).fold(1., f64::min);
Ok(Similarity {
image: image.into(),
score,
})
}
/// Comparing gray images using histogram
/// # Arguments
///
/// * `metric` - The distance metric to use
///
/// * `first` - The first of the images to compare
///
/// * `second` - The first of the images to compare
pub fn gray_similarity_histogram(
metric: Metric,
first: &GrayImage,
second: &GrayImage,
) -> Result<f64, CompareError> {
if first.dimensions() != second.dimensions() {
return Err(CompareError::DimensionsDiffer);
}
histogram::img_compare(first, second, metric)
}
#[doc(inline)]
pub use hybrid::rgb_hybrid_compare;
use crate::squared_error::root_mean_squared_error_simple;
use crate::ssim::ssim_simple;
#[doc(inline)]
pub use hybrid::rgba_hybrid_compare;
#[doc(inline)]
pub use hybrid::rgba_blended_hybrid_compare;
pub use hybrid::BlendInput;
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn dimensions_differ_test_gray_structure() {
let first = GrayImage::new(1, 1);
let second = GrayImage::new(2, 2);
let result = gray_similarity_structure(&Algorithm::RootMeanSquared, &first, &second);
assert!(result.is_err());
}
#[test]
fn dimensions_differ_test_rgb_structure() {
let first = RgbImage::new(1, 1);
let second = RgbImage::new(2, 2);
let result = rgb_similarity_structure(&Algorithm::RootMeanSquared, &first, &second);
assert!(result.is_err());
}
#[test]
fn dimensions_differ_test_gray_histos() {
let first = GrayImage::new(1, 1);
let second = GrayImage::new(2, 2);
let result = gray_similarity_histogram(Metric::Hellinger, &first, &second);
assert!(result.is_err());
}
}