1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#![crate_name = "image_compare"]
//! # Comparing gray images using structure
//! This crate allows to compare grayscale images using either structure or histogramming methods.
//! The easiest use is loading two images, converting them to grayscale and running a comparison:
//! ```no_run
//! use image_compare::Algorithm;
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_luma8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_luma8();
//! let result = image_compare::gray_similarity_structure(&Algorithm::MSSIMSimple, &image_one, &image_two).expect("Images had different dimensions");
//! ```
//! Check the [`Algorithm`] enum for implementation details
//!
//! # Comparing gray images using histogram
//!
//! Histogram comparisons are possible using the histogram comparison function
//! ```no_run
//! use image_compare::Metric;
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_luma8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_luma8();
//! let result = image_compare::gray_similarity_histogram(Metric::Hellinger, &image_one, &image_two).expect("Images had different dimensions");
//! ```
//! Check the [`Metric`] enum for implementation details
//!
//! # Comparing rgb images using hybrid mode
//!
//! hybrid mode allows to decompose the image to structure and color channels (YUV) which
//! are compared separately but then combined into a common result.
//! ## Direct usage on two RGB8 images
//! ```no_run
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_rgb8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_rgb8();
//! let result = image_compare::rgb_hybrid_compare(&image_one, &image_two).expect("Images had different dimensions");
//! ```
//!
//! ## Compare the similarity of two maybe-rgba images in front a given background color
//! If an image is RGBA it will be blended with a background of the given color.
//! RGB images will not be modified.
//!
//! ```no_run
//! use image::Rgb;
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_rgba8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_rgb8();
//! let white = Rgb([255,255,255]);
//! let result = image_compare::rgba_blended_hybrid_compare((&image_one).into(), (&image_two).into(), white).expect("Images had different dimensions");
//! ```
//!
//! # Comparing two RGBA8 images using hybrid mode
//!
//! hybrid mode allows to decompose the image to structure, color and alpha channels (YUVA) which
//! are compared separately but then combined into a common result.
//! ```no_run
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_rgba8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_rgba8();
//! let result = image_compare::rgba_hybrid_compare(&image_one, &image_two).expect("Images had different dimensions");
//! ```
//!
//! # Using structure results
//! All structural comparisons return a result struct that contains the similarity score.
//! For the score 1.0 is perfectly similar, 0.0 is dissimilar and some algorithms even provide up to -1.0 for inverse.
//! Furthermore, the algorithm may produce a similarity map (MSSIM, RMS and hybrid compare do) that can be evaluated per pixel or converted to a visualization:
//! ```no_run
//! let image_one = image::open("image1.png").expect("Could not find test-image").into_rgba8();
//! let image_two = image::open("image2.png").expect("Could not find test-image").into_rgba8();
//! let result = image_compare::rgba_hybrid_compare(&image_one, &image_two).expect("Images had different dimensions");
//! if result.score < 0.95 {
//!   let diff_img = result.image.to_color_map();
//!   diff_img.save("diff_image.png").expect("Could not save diff image");
//! }
//! ```

#![warn(missing_docs)]
#![warn(unused_qualifications)]
#![deny(deprecated)]

mod colorization;
mod histogram;
mod hybrid;
mod squared_error;
mod ssim;
mod utils;

#[doc(hidden)]
pub mod prelude {
    pub use image::{GrayImage, ImageBuffer, Luma, Rgb, RgbImage};
    use thiserror::Error;
    /// The enum for selecting a grayscale comparison implementation
    pub enum Algorithm {
        /// A simple RMSE implementation - will return: <img src="https://render.githubusercontent.com/render/math?math=1-\sqrt{\frac{(\sum_{x,y=0}^{x,y=w,h}\left(f(x,y)-g(x,y)\right)^2)}{w*h}}">
        RootMeanSquared,
        /// a simple MSSIM implementation - will run SSIM (implemented as on wikipedia: <img src="https://render.githubusercontent.com/render/math?math=\mathrm{SSIM}(x,y)={\frac {(2\mu _{x}\mu _{y}+c_{1})(2\sigma _{xy}+c_{2})}{(\mu _{x}^{2}+\mu _{y}^{2}+c_{1})(\sigma _{x}^{2}+\sigma _{y}^{2}+c_{2})}}"> ) over 8x8 px windows and average the results
        MSSIMSimple,
    }

    #[derive(Error, Debug)]
    /// The errors that can occur during comparison of the images
    pub enum CompareError {
        #[error("The dimensions of the input images are not identical")]
        DimensionsDiffer,
        #[error("Comparison calculation failed: {0}")]
        CalculationFailed(String),
    }

    pub use crate::colorization::GraySimilarityImage;
    pub use crate::colorization::RGBASimilarityImage;
    pub use crate::colorization::RGBSimilarityImage;
    pub use crate::colorization::Similarity;
}

#[doc(inline)]
pub use histogram::Metric;
#[doc(inline)]
pub use prelude::Algorithm;
#[doc(inline)]
pub use prelude::CompareError;
#[doc(inline)]
pub use prelude::Similarity;

use prelude::*;
use utils::Decompose;

/// Comparing gray images using structure.
///
/// # Arguments
///
/// * `algorithm` - The comparison algorithm to use
///
/// * `first` - The first of the images to compare
///
/// * `second` - The first of the images to compare
pub fn gray_similarity_structure(
    algorithm: &Algorithm,
    first: &GrayImage,
    second: &GrayImage,
) -> Result<Similarity, CompareError> {
    if first.dimensions() != second.dimensions() {
        return Err(CompareError::DimensionsDiffer);
    }
    match algorithm {
        Algorithm::RootMeanSquared => root_mean_squared_error_simple(first, second),
        Algorithm::MSSIMSimple => ssim_simple(first, second),
    }
    .map(|(score, i)| Similarity {
        image: i.into(),
        score,
    })
}

/// Comparing rgb images using structure.
/// RGB structure similarity is performed by doing a channel split and taking the maximum deviation (minimum similarity) for the result.
/// The image contains the complete deviations.
/// # Arguments
///
/// * `algorithm` - The comparison algorithm to use
///
/// * `first` - The first of the images to compare
///
/// * `second` - The first of the images to compare
///
/// ### Experimental:
/// As you can see from the pinning tests in cucumber - the differences are quite small, the runtime difference is rather large though.
pub fn rgb_similarity_structure(
    algorithm: &Algorithm,
    first: &RgbImage,
    second: &RgbImage,
) -> Result<Similarity, CompareError> {
    if first.dimensions() != second.dimensions() {
        return Err(CompareError::DimensionsDiffer);
    }

    let first_channels = first.split_channels();
    let second_channels = second.split_channels();
    let mut results = Vec::new();

    for channel in 0..3 {
        match algorithm {
            Algorithm::RootMeanSquared => {
                results.push(root_mean_squared_error_simple(
                    &first_channels[channel],
                    &second_channels[channel],
                )?);
            }
            Algorithm::MSSIMSimple => {
                results.push(ssim_simple(
                    &first_channels[channel],
                    &second_channels[channel],
                )?);
            }
        }
    }
    let input = results.iter().map(|(_, i)| i).collect::<Vec<_>>();
    let image = utils::merge_similarity_channels(&input.try_into().unwrap());
    let score = results.iter().map(|(s, _)| *s).fold(1., f64::min);
    Ok(Similarity {
        image: image.into(),
        score,
    })
}

/// Comparing gray images using histogram
/// # Arguments
///
/// * `metric` - The distance metric to use
///
/// * `first` - The first of the images to compare
///
/// * `second` - The first of the images to compare
pub fn gray_similarity_histogram(
    metric: Metric,
    first: &GrayImage,
    second: &GrayImage,
) -> Result<f64, CompareError> {
    if first.dimensions() != second.dimensions() {
        return Err(CompareError::DimensionsDiffer);
    }
    histogram::img_compare(first, second, metric)
}

#[doc(inline)]
pub use hybrid::rgb_hybrid_compare;

use crate::squared_error::root_mean_squared_error_simple;
use crate::ssim::ssim_simple;
#[doc(inline)]
pub use hybrid::rgba_hybrid_compare;

#[doc(inline)]
pub use hybrid::rgba_blended_hybrid_compare;

pub use hybrid::BlendInput;

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn dimensions_differ_test_gray_structure() {
        let first = GrayImage::new(1, 1);
        let second = GrayImage::new(2, 2);
        let result = gray_similarity_structure(&Algorithm::RootMeanSquared, &first, &second);
        assert!(result.is_err());
    }

    #[test]
    fn dimensions_differ_test_rgb_structure() {
        let first = RgbImage::new(1, 1);
        let second = RgbImage::new(2, 2);
        let result = rgb_similarity_structure(&Algorithm::RootMeanSquared, &first, &second);
        assert!(result.is_err());
    }

    #[test]
    fn dimensions_differ_test_gray_histos() {
        let first = GrayImage::new(1, 1);
        let second = GrayImage::new(2, 2);
        let result = gray_similarity_histogram(Metric::Hellinger, &first, &second);
        assert!(result.is_err());
    }
}