1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
use crossbeam_channel::{unbounded, Receiver, Sender};
use crossbeam_utils::thread;
use std::collections::HashMap;
use std::io::prelude::*;
use std::io::ErrorKind;
use std::net::{Shutdown, TcpStream};
use std::time::Duration;

pub mod packets;

/// Messages the client needs to format/display to the user.
pub type Icbmsg = Vec<String>;

/// Session parameters provided by client upon initialization.
#[derive(Debug)]
pub struct Config {
    pub serverip: &'static str,
    pub nickname: String,
    pub port: u16,
}

/// Commands a `Client` can send to the `Server` through the `cmd` channels.
#[derive(Debug, PartialEq)]
pub enum Command {
    /// Terminate the connection to the remote server. ICB doesn't have a way to
    /// perform a clean disconnect other than shutting down the socket.
    Bye,
}

/// Representation of the client/user state.
#[derive(Debug)]
pub struct Client {
    pub nickname: String,
    pub cmd_s: Sender<Command>,
    pub msg_r: Receiver<Icbmsg>,
}

/// Representation of the connection to the remote server.
#[derive(Debug)]
pub struct Server {
    hostname: String,
    port: u16,
    sock: Option<TcpStream>,
    cmd_r: Receiver<Command>,
    msg_s: Sender<Icbmsg>,
    nickname: String,
}

impl Server {
    fn new(
        hostname: &str,
        port: u16,
        nickname: &str,
        cmd_r: Receiver<Command>,
        msg_s: Sender<Icbmsg>,
    ) -> Server {
        Server {
            hostname: hostname.to_string(),
            port,
            cmd_r,
            msg_s,
            nickname: nickname.to_string(),
            sock: None,
        }
    }

    /// Read a buffer's worth of data from the TcpStream and dispatch it to the
    /// correct parser.
    /// If the caller expects a packet of certain type it is provided through `expected`.
    fn read(&mut self, expected: Option<char>) -> Result<HashMap<&str, String>, std::io::Error> {
        // Allocate a buffer large enough to hold the maximum ICB packet.
        let mut buffer = [0; 254];

        // Read the data from the network
        let nbytes = self.sock.as_ref().unwrap().read(&mut buffer)?;
        if nbytes == 0 {
            return Ok(HashMap::new());
        }

        // Copy as much data from the network buffer into a vector as the server said
        // it would send. This is indicated by the first byte of the packet.
        let packet_len = buffer[0] as usize;
        println!("packet_len: {}", packet_len);
        let mut message = Vec::<u8>::with_capacity(packet_len - 1);

        // Copy all packet_len bytes (including trailing NUL)
        for (idx, v) in buffer.iter().enumerate() {
            if idx == 0 {
                // Skip the first byte (packet length)
                continue;
            } else if idx == packet_len + 1 {
                break;
            }

            message.push(*v);
        }

        println!("message: {:?}", message);

        let packet_type_byte = message[0] as char;

        match expected {
            Some(t) if (packet_type_byte == t) => {
                // Caller was expecting a particular type, let's see if we have that.
                println!("OK! Expected packet of type {} was received", t);
            }
            Some(t) => {
                println!("FAIL! You expected {} but I got {}", t, packet_type_byte);
                return Err(std::io::Error::new(
                    ErrorKind::NotFound,
                    "Packet type not found",
                ));
            }
            _ => {
                println!("OK! Nothing was expected, just carry on. ");
            }
        }

        for packet in &packets::PACKETS {
            println!("Looking for a packet of type: {}", packet_type_byte);
            if packet.packet_type == packet_type_byte {
                println!("Matching packet for {}!", packet_type_byte);
                let data = (packet.parse)(message, packet_len);
                println!("data = {:?}", data);

                return Ok(data);
            }
        }

        Err(std::io::Error::new(
            ErrorKind::InvalidData,
            format!(
                "Invalid data received from peer of type {}",
                packet_type_byte
            ),
        ))
    }

    /// This is the "main event loop" of the library which starts by setting up the socket as
    /// non-blocking before entering a loop where it looks for incoming commands on `msg_r`
    /// which need to be dealt with. Secondly it looks for any ICB traffic that was received.
    pub fn run(&mut self) {
        // Up to this point blocking reads from the network were fine, now we're going to reqeuire
        // non-blocking reads.
        self.sock
            .as_ref()
            .unwrap()
            .set_nonblocking(true)
            .expect("set_nonblocking on socket failed");

        // XXX: thread::scope() really needed here?
        thread::scope(|s| {
            s.spawn(|_| loop {
                // Handle incoming commands sent by the client.
                match self.cmd_r.try_recv() {
                    Ok(m) if m == Command::Bye => {
                        println!("Terminating connection to remote host");
                        self.sock
                            .as_ref()
                            .unwrap()
                            .shutdown(Shutdown::Both)
                            .unwrap();
                        // XXX: Inform client the connection was closed
                        break;
                    }
                    Ok(m) => println!("cmd_r: Received unknown command: {:?}", m),
                    Err(_) => {}
                }

                // Handle incoming ICB packets, based on the type we'll determine
                // how to handle them.
                // For example T_OPEN and T_PERSONAL will be sent to the client.
                if let Ok(v) = self.read(None) {
                    if [packets::T_OPEN, packets::T_PERSONAL]
                        .contains(&v["type"].chars().next().unwrap())
                    {
                        // Use an indirection to prevent mutably borrowing self.msg_s
                        let msg = vec![
                            v["type"].clone(),
                            v["nickname"].clone(),
                            v["message"].clone(),
                        ];
                        self.msg_s.send(msg).unwrap();
                    }
                }

                std::thread::sleep(Duration::from_millis(1));
            });
        })
        .unwrap();
    }

    // Send a login packet with the 'login' command and a default group of '1'.
    // Any other commands are currently not understood by the server implementation.
    // Upon sending the login packet we expect an empty login response.
    // At this point the client and server can start exchanging other types of packets.
    fn login(&mut self) -> std::io::Result<()> {
        let login_packet = (packets::LOGIN.create)(vec![
            self.nickname.as_str(),
            self.nickname.as_str(),
            "1",
            "login",
        ]);

        self.sock
            .as_ref()
            .unwrap()
            .write_all(login_packet.as_bytes())?;

        if self.read(Some(packets::T_LOGIN)).is_err() {
            panic!("Login failed.");
        }

        Ok(())
    }

    pub fn connect(&mut self) -> std::io::Result<()> {
        // TcpStream::connect() returns a Result<TcpStream>; this we can
        // handle with Ok() and Err(). self.sock is defined as an Option<TcpStream>,
        // so we need to wrap the outcome of Ok() with Some() to convert it
        // from a Result<> to an Option<>.
        match TcpStream::connect(format!("{}:{}", &self.hostname, &self.port)) {
            Ok(t) => self.sock = Some(t),
            Err(_) => panic!("Could not connect to {}:{}", &self.hostname, &self.port),
        }

        // At this point we expect a protocol packet.
        if let Ok(v) = self.read(Some(packets::T_PROTOCOL)) {
            println!("protocol packet data: {:?}", v);
            println!(
                "Connected to {}/{}",
                v.get("hostid").unwrap(),
                v.get("clientid").unwrap()
            )
        } else {
            panic!("Expected a protocol packet, which didn't arrive.")
        }

        Ok(())
    }
}

/// Entrypoint for this module; it sets up the `Client` and `Server` structs
/// and establishes a connection to the configured server.
pub fn init(config: Config) -> Result<(Client, Server), std::io::Error> {
    let (msg_s, msg_r) = unbounded();
    let (cmd_s, cmd_r) = unbounded();

    let mut server = Server::new(config.serverip, config.port, &config.nickname, cmd_r, msg_s);
    server.connect()?;
    server.login()?;

    let client = Client {
        nickname: config.nickname,
        cmd_s,
        msg_r,
    };

    Ok((client, server))
}