logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// Copyright © SixtyFPS GmbH <info@slint-ui.com>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-commercial

#![warn(missing_docs)]
//! The animation system

use alloc::boxed::Box;
use core::cell::Cell;

#[cfg(feature = "std")]
use lyon_algorithms::geom::cubic_bezier;
#[cfg(not(feature = "std"))]
mod cubic_bezier {
    //! This is a copy from lyon_algorithms::geom::cubic_bezier implementation
    type S = f32;
    use euclid::default::Point2D as Point;
    use num_traits::Float;
    trait Scalar {
        const ONE: f32 = 1.;
        const THREE: f32 = 3.;
        const HALF: f32 = 0.5;
        const SIX: f32 = 6.;
        const NINE: f32 = 9.;
        fn value(v: f32) -> f32 {
            v
        }
    }
    impl Scalar for f32 {}
    pub struct CubicBezierSegment {
        pub from: Point<S>,
        pub ctrl1: Point<S>,
        pub ctrl2: Point<S>,
        pub to: Point<S>,
    }

    impl CubicBezierSegment {
        /// Sample the x coordinate of the curve at t (expecting t between 0 and 1).
        pub fn x(&self, t: S) -> S {
            let t2 = t * t;
            let t3 = t2 * t;
            let one_t = S::ONE - t;
            let one_t2 = one_t * one_t;
            let one_t3 = one_t2 * one_t;

            self.from.x * one_t3
                + self.ctrl1.x * S::THREE * one_t2 * t
                + self.ctrl2.x * S::THREE * one_t * t2
                + self.to.x * t3
        }

        /// Sample the y coordinate of the curve at t (expecting t between 0 and 1).
        pub fn y(&self, t: S) -> S {
            let t2 = t * t;
            let t3 = t2 * t;
            let one_t = S::ONE - t;
            let one_t2 = one_t * one_t;
            let one_t3 = one_t2 * one_t;

            self.from.y * one_t3
                + self.ctrl1.y * S::THREE * one_t2 * t
                + self.ctrl2.y * S::THREE * one_t * t2
                + self.to.y * t3
        }

        #[inline]
        fn derivative_coefficients(&self, t: S) -> (S, S, S, S) {
            let t2 = t * t;
            (
                -S::THREE * t2 + S::SIX * t - S::THREE,
                S::NINE * t2 - S::value(12.0) * t + S::THREE,
                -S::NINE * t2 + S::SIX * t,
                S::THREE * t2,
            )
        }

        /// Sample the x coordinate of the curve's derivative at t (expecting t between 0 and 1).
        pub fn dx(&self, t: S) -> S {
            let (c0, c1, c2, c3) = self.derivative_coefficients(t);
            self.from.x * c0 + self.ctrl1.x * c1 + self.ctrl2.x * c2 + self.to.x * c3
        }
    }

    impl CubicBezierSegment {
        // This is actually in the Monotonic<CubicBezierSegment<S>> impl
        pub fn solve_t_for_x(&self, x: S, t_range: core::ops::Range<S>, tolerance: S) -> S {
            debug_assert!(t_range.start <= t_range.end);
            let from = self.x(t_range.start);
            let to = self.x(t_range.end);
            if x <= from {
                return t_range.start;
            }
            if x >= to {
                return t_range.end;
            }

            // Newton's method.
            let mut t = x - from / (to - from);
            for _ in 0..8 {
                let x2 = self.x(t);

                if S::abs(x2 - x) <= tolerance {
                    return t;
                }

                let dx = self.dx(t);

                if dx <= S::EPSILON {
                    break;
                }

                t -= (x2 - x) / dx;
            }

            // Fall back to binary search.
            let mut min = t_range.start;
            let mut max = t_range.end;
            let mut t = S::HALF;

            while min < max {
                let x2 = self.x(t);

                if S::abs(x2 - x) < tolerance {
                    return t;
                }

                if x > x2 {
                    min = t;
                } else {
                    max = t;
                }

                t = (max - min) * S::HALF + min;
            }

            t
        }
    }
}

/// The representation of an easing curve, for animations
#[repr(C, u32)]
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum EasingCurve {
    /// The linear curve
    Linear,
    /// A Cubic bezier curve, with its 4 parameter
    CubicBezier([f32; 4]),
    //Custom(Box<dyn Fn(f32) -> f32>),
}

impl Default for EasingCurve {
    fn default() -> Self {
        Self::Linear
    }
}

/// Represent an instant, in milliseconds since the AnimationDriver's initial_instant
#[repr(transparent)]
#[derive(Copy, Clone, Debug, Default, PartialEq, Ord, PartialOrd, Eq)]
pub struct Instant(pub u64);

impl core::ops::Sub<Instant> for Instant {
    type Output = core::time::Duration;
    fn sub(self, other: Self) -> core::time::Duration {
        core::time::Duration::from_millis(self.0 - other.0)
    }
}

impl core::ops::Sub<core::time::Duration> for Instant {
    type Output = Instant;
    fn sub(self, other: core::time::Duration) -> Instant {
        Self(self.0 - other.as_millis() as u64)
    }
}

impl core::ops::Add<core::time::Duration> for Instant {
    type Output = Instant;
    fn add(self, other: core::time::Duration) -> Instant {
        Self(self.0 + other.as_millis() as u64)
    }
}

impl core::ops::AddAssign<core::time::Duration> for Instant {
    fn add_assign(&mut self, other: core::time::Duration) {
        self.0 += other.as_millis() as u64;
    }
}

impl core::ops::SubAssign<core::time::Duration> for Instant {
    fn sub_assign(&mut self, other: core::time::Duration) {
        self.0 -= other.as_millis() as u64;
    }
}

impl Instant {
    /// Returns the amount of time elapsed since an other instant.
    ///
    /// Equivalent to `self - earlier`
    pub fn duration_since(self, earlier: Instant) -> core::time::Duration {
        self - earlier
    }

    /// Wrapper around [`std::time::Instant::now()`] that delegates to the backend
    /// and allows working in no_std environments.
    pub fn now() -> Self {
        Self(Self::duration_since_start().as_millis() as u64)
    }

    fn duration_since_start() -> core::time::Duration {
        crate::backend::instance().map(|backend| backend.duration_since_start()).unwrap_or_default()
    }
}

/// The AnimationDriver
pub struct AnimationDriver {
    /// Indicate whether there are any active animations that require a future call to update_animations.
    active_animations: Cell<bool>,
    global_instant: core::pin::Pin<Box<crate::Property<Instant>>>,
}

impl Default for AnimationDriver {
    fn default() -> Self {
        AnimationDriver {
            active_animations: Cell::default(),
            global_instant: Box::pin(crate::Property::new_named(
                Instant::default(),
                "i_slint_core::AnimationDriver::global_instant",
            )),
        }
    }
}

impl AnimationDriver {
    /// Iterates through all animations based on the new time tick and updates their state. This should be called by
    /// the windowing system driver for every frame.
    pub fn update_animations(&self, new_tick: Instant) {
        if self.global_instant.as_ref().get_untracked() != new_tick {
            self.active_animations.set(false);
            self.global_instant.as_ref().set(new_tick);
        }
    }

    /// Returns true if there are any active or ready animations. This is used by the windowing system to determine
    /// if a new animation frame is required or not. Returns false otherwise.
    pub fn has_active_animations(&self) -> bool {
        self.active_animations.get()
    }

    /// Tell the driver that there are active animations
    pub fn set_has_active_animations(&self) {
        self.active_animations.set(true);
    }
    /// The current instant that is to be used for animation
    /// using this function register the current binding as a dependency
    pub fn current_tick(&self) -> Instant {
        self.global_instant.as_ref().get()
    }
}

#[cfg(all(not(feature = "std"), feature = "unsafe_single_core"))]
use crate::unsafe_single_core::thread_local;

thread_local!(
/// This is the default instance of the animation driver that's used to advance all property animations
/// at the same time.
pub static CURRENT_ANIMATION_DRIVER : AnimationDriver = AnimationDriver::default()
);

/// The current instant that is to be used for animation
/// using this function register the current binding as a dependency
pub fn current_tick() -> Instant {
    CURRENT_ANIMATION_DRIVER.with(|driver| driver.current_tick())
}

/// map a value between 0 and 1 to another value between 0 and 1 according to the curve
pub fn easing_curve(curve: &EasingCurve, value: f32) -> f32 {
    match curve {
        EasingCurve::Linear => value,
        EasingCurve::CubicBezier([a, b, c, d]) => {
            if !(0.0..=1.0).contains(a) && !(0.0..=1.0).contains(c) {
                return value;
            };
            let curve = cubic_bezier::CubicBezierSegment {
                from: (0., 0.).into(),
                ctrl1: (*a, *b).into(),
                ctrl2: (*c, *d).into(),
                to: (1., 1.).into(),
            };
            #[cfg(feature = "std")]
            let curve = curve.assume_monotonic();
            curve.y(curve.solve_t_for_x(value, 0.0..1.0, 0.01))
        }
    }
}

/*
#[test]
fn easing_test() {
    fn test_curve(name: &str, curve: &EasingCurve) {
        let mut img = image::ImageBuffer::new(500, 500);
        let white = image::Rgba([255 as u8, 255 as u8, 255 as u8, 255 as u8]);

        for x in 0..img.width() {
            let t = (x as f32) / (img.width() as f32);
            let y = easing_curve(curve, t);
            let y = (y * (img.height() as f32)) as u32;
            let y = y.min(img.height() - 1);
            *img.get_pixel_mut(x, img.height() - 1 - y) = white;
        }

        img.save(
            std::path::PathBuf::from(std::env::var_os("HOME").unwrap())
                .join(format!("{}.png", name)),
        )
        .unwrap();
    }

    test_curve("linear", &EasingCurve::Linear);
    test_curve("linear2", &EasingCurve::CubicBezier([0.0, 0.0, 1.0, 1.0]));
    test_curve("ease", &EasingCurve::CubicBezier([0.25, 0.1, 0.25, 1.0]));
    test_curve("ease_in", &EasingCurve::CubicBezier([0.42, 0.0, 1.0, 1.0]));
    test_curve("ease_in_out", &EasingCurve::CubicBezier([0.42, 0.0, 0.58, 1.0]));
    test_curve("ease_out", &EasingCurve::CubicBezier([0.0, 0.0, 0.58, 1.0]));
}
*/

/// Update the global animation time to the current time
pub fn update_animations() {
    CURRENT_ANIMATION_DRIVER.with(|driver| {
        #[allow(unused_mut)]
        let mut duration = Instant::duration_since_start().as_millis() as u64;
        #[cfg(feature = "std")]
        if let Ok(val) = std::env::var("SLINT_SLOW_ANIMATIONS") {
            let factor = val.parse().unwrap_or(2);
            duration /= factor;
        };
        driver.update_animations(Instant(duration))
    });
}