1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
//! HTTP Server
//!
//! A `Server` is created to listen on a port, parse HTTP requests, and hand
//! them off to a `Service`.

#[cfg(feature = "compat")]
pub mod compat;
mod service;

use std::cell::RefCell;
use std::fmt;
use std::io;
use std::marker::PhantomData;
use std::net::SocketAddr;
use std::rc::{Rc, Weak};
use std::time::Duration;

use futures::task::{self, Task};
use futures::future::{self};
use futures::{Future, Stream, Poll, Async};

#[cfg(feature = "compat")]
use http;

use tokio_io::{AsyncRead, AsyncWrite};
use tokio::reactor::{Core, Handle, Timeout};
use tokio::net::TcpListener;
pub use tokio_service::{NewService, Service};

use proto;
#[cfg(feature = "compat")]
use proto::Body;
use self::addr_stream::AddrStream;
use self::hyper_service::HyperService;

pub use proto::response::Response;
pub use proto::request::Request;

feat_server_proto! {
    mod server_proto;
    pub use self::server_proto::{
        __ProtoRequest,
        __ProtoResponse,
        __ProtoTransport,
        __ProtoBindTransport,
    };
}

pub use self::service::{const_service, service_fn};

/// A configuration of the HTTP protocol.
///
/// This structure is used to create instances of `Server` or to spawn off tasks
/// which handle a connection to an HTTP server. Each instance of `Http` can be
/// configured with various protocol-level options such as keepalive.
pub struct Http<B = ::Chunk> {
    max_buf_size: Option<usize>,
    keep_alive: bool,
    pipeline: bool,
    sleep_on_errors: bool,
    _marker: PhantomData<B>,
}

/// An instance of a server created through `Http::bind`.
///
/// This server is intended as a convenience for creating a TCP listener on an
/// address and then serving TCP connections accepted with the service provided.
pub struct Server<S, B>
where B: Stream<Error=::Error>,
      B::Item: AsRef<[u8]>,
{
    protocol: Http<B::Item>,
    new_service: S,
    reactor: Core,
    listener: TcpListener,
    shutdown_timeout: Duration,
}

/// A stream mapping incoming IOs to new services.
///
/// Yields `Connection`s that are futures that should be put on a reactor.
#[must_use = "streams do nothing unless polled"]
#[derive(Debug)]
pub struct Serve<I, S> {
    incoming: I,
    new_service: S,
    protocol: Http,
}

/*
#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
pub struct SpawnAll<I, S, E> {
    executor: E,
    serve: Serve<I, S>,
}
*/

/// A stream of connections from binding to an address.
#[must_use = "streams do nothing unless polled"]
#[derive(Debug)]
pub struct AddrIncoming {
    addr: SocketAddr,
    keep_alive_timeout: Option<Duration>,
    listener: TcpListener,
    handle: Handle,
    sleep_on_errors: bool,
    timeout: Option<Timeout>,
}

/// A future binding a connection with a Service.
///
/// Polling this future will drive HTTP forward.
///
/// # Note
///
/// This will currently yield an unnameable (`Opaque`) value
/// on success. The purpose of this is that nothing can be assumed about
/// the type, not even it's name. It's probable that in a later release,
/// this future yields the underlying IO object, which could be done without
/// a breaking change.
///
/// It is likely best to just map the value to `()`, for now.
#[must_use = "futures do nothing unless polled"]
pub struct Connection<I, S>
where
    S: HyperService,
    S::ResponseBody: Stream<Error=::Error>,
    <S::ResponseBody as Stream>::Item: AsRef<[u8]>,
{
    conn: proto::dispatch::Dispatcher<
        proto::dispatch::Server<S>,
        S::ResponseBody,
        I,
        <S::ResponseBody as Stream>::Item,
        proto::ServerTransaction,
        proto::KA,
    >,
}

// ===== impl Http =====

impl<B: AsRef<[u8]> + 'static> Http<B> {
    /// Creates a new instance of the HTTP protocol, ready to spawn a server or
    /// start accepting connections.
    pub fn new() -> Http<B> {
        Http {
            keep_alive: true,
            max_buf_size: None,
            pipeline: false,
            sleep_on_errors: false,
            _marker: PhantomData,
        }
    }

    /// Enables or disables HTTP keep-alive.
    ///
    /// Default is true.
    pub fn keep_alive(&mut self, val: bool) -> &mut Self {
        self.keep_alive = val;
        self
    }

    /// Set the maximum buffer size for the connection.
    pub fn max_buf_size(&mut self, max: usize) -> &mut Self {
        self.max_buf_size = Some(max);
        self
    }

    /// Aggregates flushes to better support pipelined responses.
    ///
    /// Experimental, may be have bugs.
    ///
    /// Default is false.
    pub fn pipeline(&mut self, enabled: bool) -> &mut Self {
        self.pipeline = enabled;
        self
    }

    /// Swallow connection accept errors. Instead of passing up IO errors when
    /// the server is under heavy load the errors will be ignored. Some
    /// connection accept errors (like "connection reset") can be ignored, some
    /// (like "too many files open") may consume 100% CPU and a timout of 10ms
    /// is used in that case.
    ///
    /// Default is false.
    pub fn sleep_on_errors(&mut self, enabled: bool) -> &mut Self {
        self.sleep_on_errors = enabled;
        self
    }

    /// Bind the provided `addr` and return a server ready to handle
    /// connections.
    ///
    /// This method will bind the `addr` provided with a new TCP listener ready
    /// to accept connections. Each connection will be processed with the
    /// `new_service` object provided as well, creating a new service per
    /// connection.
    ///
    /// The returned `Server` contains one method, `run`, which is used to
    /// actually run the server.
    pub fn bind<S, Bd>(&self, addr: &SocketAddr, new_service: S) -> ::Result<Server<S, Bd>>
        where S: NewService<Request = Request, Response = Response<Bd>, Error = ::Error> + 'static,
              Bd: Stream<Item=B, Error=::Error>,
    {
        let core = try!(Core::new());
        let handle = core.handle();
        let listener = try!(TcpListener::bind(addr, &handle));

        Ok(Server {
            new_service: new_service,
            reactor: core,
            listener: listener,
            protocol: self.clone(),
            shutdown_timeout: Duration::new(1, 0),
        })
    }


    /// Bind a `NewService` using types from the `http` crate.
    ///
    /// See `Http::bind`.
    #[cfg(feature = "compat")]
    pub fn bind_compat<S, Bd>(&self, addr: &SocketAddr, new_service: S) -> ::Result<Server<compat::NewCompatService<S>, Bd>>
        where S: NewService<Request = http::Request<Body>, Response = http::Response<Bd>, Error = ::Error> +
                    Send + Sync + 'static,
              Bd: Stream<Item=B, Error=::Error>,
    {
        self.bind(addr, self::compat::new_service(new_service))
    }

    /// Bind the provided `addr` and return a server with a shared `Core`.
    ///
    /// This method allows the ability to share a `Core` with multiple servers.
    ///
    /// This is method will bind the `addr` provided with a new TCP listener ready
    /// to accept connections. Each connection will be processed with the
    /// `new_service` object provided as well, creating a new service per
    /// connection.
    pub fn serve_addr_handle<S, Bd>(&self, addr: &SocketAddr, handle: &Handle, new_service: S) -> ::Result<Serve<AddrIncoming, S>>
        where S: NewService<Request = Request, Response = Response<Bd>, Error = ::Error>,
              Bd: Stream<Item=B, Error=::Error>,
    {
        let listener = TcpListener::bind(addr, &handle)?;
        let mut incoming = AddrIncoming::new(listener, handle.clone(), self.sleep_on_errors)?;
        if self.keep_alive {
            incoming.set_keepalive(Some(Duration::from_secs(90)));
        }
        Ok(self.serve_incoming(incoming, new_service))
    }

    /// Bind the provided stream of incoming IO objects with a `NewService`.
    ///
    /// This method allows the ability to share a `Core` with multiple servers.
    pub fn serve_incoming<I, S, Bd>(&self, incoming: I, new_service: S) -> Serve<I, S>
        where I: Stream<Error=::std::io::Error>,
              I::Item: AsyncRead + AsyncWrite,
              S: NewService<Request = Request, Response = Response<Bd>, Error = ::Error>,
              Bd: Stream<Item=B, Error=::Error>,
    {
        Serve {
            incoming: incoming,
            new_service: new_service,
            protocol: Http {
                keep_alive: self.keep_alive,
                max_buf_size: self.max_buf_size,
                pipeline: self.pipeline,
                sleep_on_errors: self.sleep_on_errors,
                _marker: PhantomData,
            },
        }
    }

    /// Bind a connection together with a Service.
    ///
    /// This returns a Future that must be polled in order for HTTP to be
    /// driven on the connection.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate futures;
    /// # extern crate hyper;
    /// # extern crate tokio_core;
    /// # extern crate tokio_io;
    /// # use futures::Future;
    /// # use hyper::server::{Http, Request, Response, Service};
    /// # use tokio_io::{AsyncRead, AsyncWrite};
    /// # use tokio_core::reactor::Handle;
    /// # fn run<I, S>(some_io: I, some_service: S, some_handle: &Handle)
    /// # where
    /// #     I: AsyncRead + AsyncWrite + 'static,
    /// #     S: Service<Request=Request, Response=Response, Error=hyper::Error> + 'static,
    /// # {
    /// let http = Http::<hyper::Chunk>::new();
    /// let conn = http.serve_connection(some_io, some_service);
    ///
    /// let fut = conn
    ///     .map(|_| ())
    ///     .map_err(|e| eprintln!("server connection error: {}", e));
    ///
    /// some_handle.spawn(fut);
    /// # }
    /// # fn main() {}
    /// ```
    pub fn serve_connection<S, I, Bd>(&self, io: I, service: S) -> Connection<I, S>
        where S: Service<Request = Request, Response = Response<Bd>, Error = ::Error>,
              Bd: Stream<Error=::Error>,
              Bd::Item: AsRef<[u8]>,
              I: AsyncRead + AsyncWrite,

    {
        let ka = if self.keep_alive {
            proto::KA::Busy
        } else {
            proto::KA::Disabled
        };
        let mut conn = proto::Conn::new(io, ka);
        conn.set_flush_pipeline(self.pipeline);
        if let Some(max) = self.max_buf_size {
            conn.set_max_buf_size(max);
        }
        Connection {
            conn: proto::dispatch::Dispatcher::new(proto::dispatch::Server::new(service), conn),
        }
    }
}



impl<B> Clone for Http<B> {
    fn clone(&self) -> Http<B> {
        Http {
            ..*self
        }
    }
}

impl<B> fmt::Debug for Http<B> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Http")
            .field("keep_alive", &self.keep_alive)
            .field("pipeline", &self.pipeline)
            .finish()
    }
}



// ===== impl Server =====

impl<S, B> Server<S, B>
    where S: NewService<Request = Request, Response = Response<B>, Error = ::Error> + 'static,
          B: Stream<Error=::Error> + 'static,
          B::Item: AsRef<[u8]>,
{
    /// Returns the local address that this server is bound to.
    pub fn local_addr(&self) -> ::Result<SocketAddr> {
        Ok(try!(self.listener.local_addr()))
    }

    /// Returns a handle to the underlying event loop that this server will be
    /// running on.
    pub fn handle(&self) -> Handle {
        self.reactor.handle()
    }

    /// Configure the amount of time this server will wait for a "graceful
    /// shutdown".
    ///
    /// This is the amount of time after the shutdown signal is received the
    /// server will wait for all pending connections to finish. If the timeout
    /// elapses then the server will be forcibly shut down.
    ///
    /// This defaults to 1s.
    pub fn shutdown_timeout(&mut self, timeout: Duration) -> &mut Self {
        self.shutdown_timeout = timeout;
        self
    }

    #[doc(hidden)]
    #[deprecated(since="0.11.11", note="no_proto is always enabled")]
    pub fn no_proto(&mut self) -> &mut Self {
        self
    }

    /// Execute this server infinitely.
    ///
    /// This method does not currently return, but it will return an error if
    /// one occurs.
    pub fn run(self) -> ::Result<()> {
        self.run_until(future::empty())
    }

    /// Execute this server until the given future, `shutdown_signal`, resolves.
    ///
    /// This method, like `run` above, is used to execute this HTTP server. The
    /// difference with `run`, however, is that this method allows for shutdown
    /// in a graceful fashion. The future provided is interpreted as a signal to
    /// shut down the server when it resolves.
    ///
    /// This method will block the current thread executing the HTTP server.
    /// When the `shutdown_signal` has resolved then the TCP listener will be
    /// unbound (dropped). The thread will continue to block for a maximum of
    /// `shutdown_timeout` time waiting for active connections to shut down.
    /// Once the `shutdown_timeout` elapses or all active connections are
    /// cleaned out then this method will return.
    pub fn run_until<F>(self, shutdown_signal: F) -> ::Result<()>
        where F: Future<Item = (), Error = ()>,
    {
        let Server { protocol, new_service, mut reactor, listener, shutdown_timeout } = self;

        let handle = reactor.handle();

        let mut incoming = AddrIncoming::new(listener, handle.clone(), protocol.sleep_on_errors)?;

        if protocol.keep_alive {
            incoming.set_keepalive(Some(Duration::from_secs(90)));
        }

        // Mini future to track the number of active services
        let info = Rc::new(RefCell::new(Info {
            active: 0,
            blocker: None,
        }));

        // Future for our server's execution
        let srv = incoming.for_each(|socket| {
            let addr = socket.remote_addr;
            debug!("accepted new connection ({})", addr);

            let addr_service = SocketAddrService::new(addr, new_service.new_service()?);
            let s = NotifyService {
                inner: addr_service,
                info: Rc::downgrade(&info),
            };
            info.borrow_mut().active += 1;
            let fut = protocol.serve_connection(socket, s)
                .map(|_| ())
                .map_err(move |err| error!("server connection error: ({}) {}", addr, err));
            handle.spawn(fut);
            Ok(())
        });

        // for now, we don't care if the shutdown signal succeeds or errors
        // as long as it resolves, we will shutdown.
        let shutdown_signal = shutdown_signal.then(|_| Ok(()));

        // Main execution of the server. Here we use `select` to wait for either
        // `incoming` or `f` to resolve. We know that `incoming` will never
        // resolve with a success (it's infinite) so we're actually just waiting
        // for an error or for `f`, our shutdown signal.
        //
        // When we get a shutdown signal (`Ok`) then we drop the TCP listener to
        // stop accepting incoming connections.
        match reactor.run(shutdown_signal.select(srv)) {
            Ok(((), _incoming)) => {}
            Err((e, _other)) => return Err(e.into()),
        }

        // Ok we've stopped accepting new connections at this point, but we want
        // to give existing connections a chance to clear themselves out. Wait
        // at most `shutdown_timeout` time before we just return clearing
        // everything out.
        //
        // Our custom `WaitUntilZero` will resolve once all services constructed
        // here have been destroyed.
        let timeout = try!(Timeout::new(shutdown_timeout, &handle));
        let wait = WaitUntilZero { info: info.clone() };
        match reactor.run(wait.select(timeout)) {
            Ok(_) => Ok(()),
            Err((e, _)) => Err(e.into())
        }
    }
}

impl<S: fmt::Debug, B: Stream<Error=::Error>> fmt::Debug for Server<S, B>
where B::Item: AsRef<[u8]>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Server")
         .field("reactor", &"...")
         .field("listener", &self.listener)
         .field("new_service", &self.new_service)
         .field("protocol", &self.protocol)
         .finish()
    }
}

// ===== impl Serve =====

impl<I, S> Serve<I, S> {
    /*
    /// Spawn all incoming connections onto the provide executor.
    pub fn spawn_all<E>(self, executor: E) -> SpawnAll<I, S, E> {
        SpawnAll {
            executor: executor,
            serve: self,
        }
    }
    */

    /// Get a reference to the incoming stream.
    #[inline]
    pub fn incoming_ref(&self) -> &I {
        &self.incoming
    }
}

impl<I, S, B> Stream for Serve<I, S>
where
    I: Stream<Error=io::Error>,
    I::Item: AsyncRead + AsyncWrite,
    S: NewService<Request=Request, Response=Response<B>, Error=::Error>,
    B: Stream<Error=::Error>,
    B::Item: AsRef<[u8]>,
{
    type Item = Connection<I::Item, S::Instance>;
    type Error = ::Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        if let Some(io) = try_ready!(self.incoming.poll()) {
            let service = self.new_service.new_service()?;
            Ok(Async::Ready(Some(self.protocol.serve_connection(io, service))))
        } else {
            Ok(Async::Ready(None))
        }
    }
}

// ===== impl SpawnAll =====

/*
impl<I, S, E> Future for SpawnAll<I, S, E>
where
    I: Stream<Error=io::Error>,
    I::Item: AsyncRead + AsyncWrite,
    S: NewService<Request=Request, Response=Response<B>, Error=::Error>,
    B: Stream<Error=::Error>,
    B::Item: AsRef<[u8]>,
    //E: Executor<Connection<I::Item, S::Instance>>,
{
    type Item = ();
    type Error = ::Error;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        loop {
            if let Some(conn) = try_ready!(self.serve.poll()) {
                let fut = conn
                    .map(|_| ())
                    .map_err(|err| debug!("conn error: {}", err));
                match self.executor.execute(fut) {
                    Ok(()) => (),
                    Err(err) => match err.kind() {
                        ExecuteErrorKind::NoCapacity => {
                            debug!("SpawnAll::poll; executor no capacity");
                            // continue loop
                        },
                        ExecuteErrorKind::Shutdown | _ => {
                            debug!("SpawnAll::poll; executor shutdown");
                            return Ok(Async::Ready(()))
                        }
                    }
                }
            } else {
                return Ok(Async::Ready(()))
            }
        }
    }
}
*/

// ===== impl Connection =====

impl<I, B, S> Future for Connection<I, S>
where S: Service<Request = Request, Response = Response<B>, Error = ::Error> + 'static,
      I: AsyncRead + AsyncWrite + 'static,
      B: Stream<Error=::Error> + 'static,
      B::Item: AsRef<[u8]>,
{
    type Item = self::unnameable::Opaque;
    type Error = ::Error;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        try_ready!(self.conn.poll());
        Ok(self::unnameable::opaque().into())
    }
}

impl<I, S> fmt::Debug for Connection<I, S>
where
    S: HyperService,
    S::ResponseBody: Stream<Error=::Error>,
    <S::ResponseBody as Stream>::Item: AsRef<[u8]>,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Connection")
            .finish()
    }
}

impl<I, B, S> Connection<I, S>
where S: Service<Request = Request, Response = Response<B>, Error = ::Error> + 'static,
      I: AsyncRead + AsyncWrite + 'static,
      B: Stream<Error=::Error> + 'static,
      B::Item: AsRef<[u8]>,
{
    /// Disables keep-alive for this connection.
    pub fn disable_keep_alive(&mut self) {
        self.conn.disable_keep_alive()
    }
}

mod unnameable {
    // This type is specifically not exported outside the crate,
    // so no one can actually name the type. With no methods, we make no
    // promises about this type.
    //
    // All of that to say we can eventually replace the type returned
    // to something else, and it would not be a breaking change.
    //
    // We may want to eventually yield the `T: AsyncRead + AsyncWrite`, which
    // doesn't have a `Debug` bound. So, this type can't implement `Debug`
    // either, so the type change doesn't break people.
    #[allow(missing_debug_implementations)]
    pub struct Opaque {
        _inner: (),
    }

    pub fn opaque() -> Opaque {
        Opaque {
            _inner: (),
        }
    }
}

// ===== impl AddrIncoming =====

impl AddrIncoming {
    fn new(listener: TcpListener, handle: Handle, sleep_on_errors: bool) -> io::Result<AddrIncoming> {
         Ok(AddrIncoming {
            addr: listener.local_addr()?,
            keep_alive_timeout: None,
            listener: listener,
            handle: handle,
            sleep_on_errors: sleep_on_errors,
            timeout: None,
        })
    }

    /// Get the local address bound to this listener.
    pub fn local_addr(&self) -> SocketAddr {
        self.addr
    }

    fn set_keepalive(&mut self, dur: Option<Duration>) {
        self.keep_alive_timeout = dur;
    }
}

impl Stream for AddrIncoming {
    // currently unnameable...
    type Item = AddrStream;
    type Error = ::std::io::Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        // Check if a previous timeout is active that was set by IO errors.
        if let Some(ref mut to) = self.timeout {
            match to.poll().expect("timeout never fails") {
                Async::Ready(_) => {}
                Async::NotReady => return Ok(Async::NotReady),
            }
        }
        self.timeout = None;
        loop {
            match self.listener.accept() {
                Ok((socket, addr)) => {
                    if let Some(dur) = self.keep_alive_timeout {
                        if let Err(e) = socket.set_keepalive(Some(dur)) {
                            trace!("error trying to set TCP keepalive: {}", e);
                        }
                    }
                    return Ok(Async::Ready(Some(AddrStream::new(socket, addr))));
                },
                Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => return Ok(Async::NotReady),
                Err(ref e) if self.sleep_on_errors => {
                    // Connection errors can be ignored directly, continue by
                    // accepting the next request.
                    if connection_error(e) {
                        continue;
                    }
                    // Sleep 10ms.
                    let delay = ::std::time::Duration::from_millis(10);
                    debug!("accept error: {}; sleeping {:?}",
                        e, delay);
                    let mut timeout = Timeout::new(delay, &self.handle)
                        .expect("can always set a timeout");
                    let result = timeout.poll()
                        .expect("timeout never fails");
                    match result {
                        Async::Ready(()) => continue,
                        Async::NotReady => {
                            self.timeout = Some(timeout);
                            return Ok(Async::NotReady);
                        }
                    }
                },
                Err(e) => return Err(e),
            }
        }
    }
}

/// This function defines errors that are per-connection. Which basically
/// means that if we get this error from `accept()` system call it means
/// next connection might be ready to be accepted.
///
/// All other errors will incur a timeout before next `accept()` is performed.
/// The timeout is useful to handle resource exhaustion errors like ENFILE
/// and EMFILE. Otherwise, could enter into tight loop.
fn connection_error(e: &io::Error) -> bool {
    e.kind() == io::ErrorKind::ConnectionRefused ||
    e.kind() == io::ErrorKind::ConnectionAborted ||
    e.kind() == io::ErrorKind::ConnectionReset
}

mod addr_stream {
    use std::io::{self, Read, Write};
    use std::net::SocketAddr;
    use bytes::{Buf, BufMut};
    use futures::Poll;
    use tokio::net::TcpStream;
    use tokio_io::{AsyncRead, AsyncWrite};


    #[derive(Debug)]
    pub struct AddrStream {
        inner: TcpStream,
        pub(super) remote_addr: SocketAddr,
    }

    impl AddrStream {
        pub(super) fn new(tcp: TcpStream, addr: SocketAddr) -> AddrStream {
            AddrStream {
                inner: tcp,
                remote_addr: addr,
            }
        }
    }

    impl Read for AddrStream {
        #[inline]
        fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
            self.inner.read(buf)
        }
    }

    impl Write for AddrStream {
        #[inline]
        fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
            self.inner.write(buf)
        }

        #[inline]
        fn flush(&mut self ) -> io::Result<()> {
            self.inner.flush()
        }
    }

    impl AsyncRead for AddrStream {
        #[inline]
        unsafe fn prepare_uninitialized_buffer(&self, buf: &mut [u8]) -> bool {
            self.inner.prepare_uninitialized_buffer(buf)
        }

        #[inline]
        fn read_buf<B: BufMut>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
            self.inner.read_buf(buf)
        }
    }

    impl AsyncWrite for AddrStream {
        #[inline]
        fn shutdown(&mut self) -> Poll<(), io::Error> {
            AsyncWrite::shutdown(&mut self.inner)
        }

        #[inline]
        fn write_buf<B: Buf>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
            self.inner.write_buf(buf)
        }
    }
}

// ===== SocketAddrService

// This is used from `Server::run`, which captures the remote address
// in this service, and then injects it into each `Request`.
struct SocketAddrService<S> {
    addr: SocketAddr,
    inner: S,
}

impl<S> SocketAddrService<S> {
    fn new(addr: SocketAddr, service: S) -> SocketAddrService<S> {
        SocketAddrService {
            addr: addr,
            inner: service,
        }
    }
}

impl<S> Service for SocketAddrService<S>
where
    S: Service<Request=Request>,
{
    type Request = S::Request;
    type Response = S::Response;
    type Error = S::Error;
    type Future = S::Future;

    fn call(&self, mut req: Self::Request) -> Self::Future {
        proto::request::addr(&mut req, self.addr);
        self.inner.call(req)
    }
}

// ===== NotifyService =====

struct NotifyService<S> {
    inner: S,
    info: Weak<RefCell<Info>>,
}

struct WaitUntilZero {
    info: Rc<RefCell<Info>>,
}

struct Info {
    active: usize,
    blocker: Option<Task>,
}

impl<S: Service> Service for NotifyService<S> {
    type Request = S::Request;
    type Response = S::Response;
    type Error = S::Error;
    type Future = S::Future;

    fn call(&self, message: Self::Request) -> Self::Future {
        self.inner.call(message)
    }
}

impl<S> Drop for NotifyService<S> {
    fn drop(&mut self) {
        let info = match self.info.upgrade() {
            Some(info) => info,
            None => return,
        };
        let mut info = info.borrow_mut();
        info.active -= 1;
        if info.active == 0 {
            if let Some(task) = info.blocker.take() {
                task.notify();
            }
        }
    }
}

impl Future for WaitUntilZero {
    type Item = ();
    type Error = io::Error;

    fn poll(&mut self) -> Poll<(), io::Error> {
        let mut info = self.info.borrow_mut();
        if info.active == 0 {
            Ok(().into())
        } else {
            info.blocker = Some(task::current());
            Ok(Async::NotReady)
        }
    }
}

mod hyper_service {
    use super::{Request, Response, Service, Stream};
    /// A "trait alias" for any type that implements `Service` with hyper's
    /// Request, Response, and Error types, and a streaming body.
    ///
    /// There is an auto implementation inside hyper, so no one can actually
    /// implement this trait. It simply exists to reduce the amount of generics
    /// needed.
    pub trait HyperService: Service + Sealed {
        #[doc(hidden)]
        type ResponseBody;
        #[doc(hidden)]
        type Sealed: Sealed2;
    }

    pub trait Sealed {}
    pub trait Sealed2 {}

    #[allow(missing_debug_implementations)]
    pub struct Opaque {
        _inner: (),
    }

    impl Sealed2 for Opaque {}

    impl<S, B> Sealed for S
    where
        S: Service<
            Request=Request,
            Response=Response<B>,
            Error=::Error,
        >,
        B: Stream<Error=::Error>,
        B::Item: AsRef<[u8]>,
    {}

    impl<S, B> HyperService for S
    where
        S: Service<
            Request=Request,
            Response=Response<B>,
            Error=::Error,
        >,
        S: Sealed,
        B: Stream<Error=::Error>,
        B::Item: AsRef<[u8]>,
    {
        type ResponseBody = B;
        type Sealed = Opaque;
    }
}