1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
use byteorder::{ByteOrder, LE};
use internal::unordered_load3;
use internal::{Filled, HashPacket, PACKET_SIZE};
use key::Key;
use std::arch::x86_64::*;
use traits::HighwayHash;
use v2x64u::V2x64U;
use v4x64u::V4x64U;

/// AVX empowered implementation that will only work on `x86_64` with avx2 enabled at the CPU
/// level.
#[derive(Debug, Default, Clone)]
pub struct AvxHash {
    key: Key,
    buffer: HashPacket,
    v0: V4x64U,
    v1: V4x64U,
    mul0: V4x64U,
    mul1: V4x64U,
}

impl HighwayHash for AvxHash {
    fn hash64(mut self, data: &[u8]) -> u64 {
        unsafe {
            self.append(data);
            self.finalize64()
        }
    }

    fn hash128(mut self, data: &[u8]) -> [u64; 2] {
        unsafe {
            self.append(data);
            self.finalize128()
        }
    }

    fn hash256(mut self, data: &[u8]) -> [u64; 4] {
        unsafe {
            self.append(data);
            self.finalize256()
        }
    }

    fn append(&mut self, data: &[u8]) {
        unsafe {
            self.append(data);
        }
    }

    fn finalize64(mut self) -> u64 {
        unsafe { Self::finalize64(&mut self) }
    }

    fn finalize128(mut self) -> [u64; 2] {
        unsafe { Self::finalize128(&mut self) }
    }

    fn finalize256(mut self) -> [u64; 4] {
        unsafe { Self::finalize256(&mut self) }
    }
}

impl AvxHash {
    /// Creates a new `AvxHash` while circumventing the runtime check for avx2. This function is
    /// unsafe! If will cause a segfault if avx2 is not enabled. Only use this function if you have
    /// benchmarked that the runtime check is significant and you know avx2 is already enabled.
    pub unsafe fn force_new(key: &Key) -> Self {
        let mut h = AvxHash {
            key: *key,
            ..Default::default()
        };
        h.reset();
        h
    }

    /// Creates a new `AvxHash` if the avx2 feature is detected.
    pub fn new(key: &Key) -> Option<Self> {
        if is_x86_feature_detected!("avx2") {
            Some(unsafe { Self::force_new(key) })
        } else {
            None
        }
    }

    #[target_feature(enable = "avx2")]
    unsafe fn finalize64(&mut self) -> u64 {
        if !self.buffer.is_empty() {
            self.update_remainder();
        }

        for _i in 0..4 {
            let permuted = AvxHash::permute(&self.v0);
            self.update(permuted);
        }

        let sum0 = V2x64U::from(_mm256_castsi256_si128((self.v0 + self.mul0).0));
        let sum1 = V2x64U::from(_mm256_castsi256_si128((self.v1 + self.mul1).0));
        let hash = sum0 + sum1;
        let mut result: u64 = 0;
        // Each lane is sufficiently mixed, so just truncate to 64 bits.
        _mm_storel_epi64(&mut result as *mut u64 as *mut __m128i, hash.0);
        result
    }

    #[target_feature(enable = "avx2")]
    unsafe fn finalize128(&mut self) -> [u64; 2] {
        if !self.buffer.is_empty() {
            self.update_remainder();
        }

        for _i in 0..6 {
            let permuted = AvxHash::permute(&self.v0);
            self.update(permuted);
        }

        let sum0 = V2x64U::from(_mm256_castsi256_si128((self.v0 + self.mul0).0));
        let sum1 = V2x64U::from(_mm256_extracti128_si256((self.v1 + self.mul1).0, 1));
        let hash = sum0 + sum1;
        let mut result: [u64; 2] = [0; 2];
        _mm_storeu_si128(result.as_mut_ptr() as *mut __m128i, hash.0);
        result
    }

    #[target_feature(enable = "avx2")]
    unsafe fn finalize256(&mut self) -> [u64; 4] {
        if !self.buffer.is_empty() {
            self.update_remainder();
        }

        for _i in 0..10 {
            let permuted = AvxHash::permute(&self.v0);
            self.update(permuted);
        }

        let sum0 = self.v0 + self.mul0;
        let sum1 = self.v1 + self.mul1;
        let hash = AvxHash::modular_reduction(&sum1, &sum0);
        let mut result: [u64; 4] = [0; 4];
        _mm256_storeu_si256(result.as_mut_ptr() as *mut __m256i, hash.0);
        result
    }

    #[target_feature(enable = "avx2")]
    unsafe fn reset(&mut self) {
        let init0 = V4x64U::new(
            0x243f6a8885a308d3,
            0x13198a2e03707344,
            0xa4093822299f31d0,
            0xdbe6d5d5fe4cce2f,
        );
        let init1 = V4x64U::new(
            0x452821e638d01377,
            0xbe5466cf34e90c6c,
            0xc0acf169b5f18a8c,
            0x3bd39e10cb0ef593,
        );

        let key = V4x64U::from(_mm256_load_si256(self.key.0.as_ptr() as *const __m256i));
        self.v0 = key ^ init0;
        self.v1 = key.rotate_by_32() ^ init1;
        self.mul0 = init0;
        self.mul1 = init1;
    }

    #[inline]
    #[target_feature(enable = "avx2")]
    unsafe fn to_lanes(packet: &[u8]) -> V4x64U {
        V4x64U::from(_mm256_loadu_si256(packet.as_ptr() as *const __m256i))
    }

    #[target_feature(enable = "avx2")]
    unsafe fn remainder(bytes: &[u8]) -> V4x64U {
        let size_mod32 = bytes.len();
        let size256 = _mm256_broadcastd_epi32(_mm_cvtsi64_si128(size_mod32 as i64));
        let size_mod4 = size_mod32 & 3;
        let size = _mm256_castsi256_si128(size256);
        if size_mod32 & 16 != 0 {
            let packetL = _mm_load_si128(bytes.as_ptr() as *const __m128i);
            let int_mask = _mm_cmpgt_epi32(size, _mm_set_epi32(31, 27, 23, 19));
            let int_lanes = _mm_maskload_epi32(bytes.as_ptr().offset(16) as *const i32, int_mask);
            let remainder = &bytes[(size_mod32 & !3) + size_mod4 - 4..];
            let last4 = LE::read_i32(remainder);
            let packetH = _mm_insert_epi32(int_lanes, last4, 3);
            let packetL256 = _mm256_castsi128_si256(packetL);
            let packet = _mm256_inserti128_si256(packetL256, packetH, 1);
            V4x64U::from(packet)
        } else {
            let int_mask = _mm_cmpgt_epi32(size, _mm_set_epi32(15, 11, 7, 3));
            let packetL = _mm_maskload_epi32(bytes.as_ptr() as *const i32, int_mask);
            let remainder = &bytes[size_mod32 & !3..];
            let last3 = unordered_load3(remainder);
            let packetH = _mm_cvtsi64_si128(last3 as i64);
            let packetL256 = _mm256_castsi128_si256(packetL);
            let packet = _mm256_inserti128_si256(packetL256, packetH, 1);
            V4x64U::from(packet)
        }
    }

    #[target_feature(enable = "avx2")]
    unsafe fn update_remainder(&mut self) {
        let size = self.buffer.len();
        let size256 = _mm256_broadcastd_epi32(_mm_cvtsi64_si128(size as i64));
        self.v0 += V4x64U::from(size256);
        let shifted_left = V4x64U::from(_mm256_sllv_epi32(self.v1.0, size256));
        let tip = _mm256_broadcastd_epi32(_mm_cvtsi32_si128(32));
        let shifted_right =
            V4x64U::from(_mm256_srlv_epi32(self.v1.0, _mm256_sub_epi32(tip, size256)));
        self.v1 = shifted_left | shifted_right;

        let packet = AvxHash::remainder(self.buffer.as_slice());
        self.update(packet);
    }

    #[target_feature(enable = "avx2")]
    unsafe fn zipper_merge(v: &V4x64U) -> V4x64U {
        let hi = 0x070806090D0A040B;
        let lo = 0x000F010E05020C03;
        v.shuffle(&V4x64U::new(hi, lo, hi, lo))
    }

    #[target_feature(enable = "avx2")]
    unsafe fn update(&mut self, packet: V4x64U) {
        self.v1 += packet;
        self.v1 += self.mul0;
        self.mul0 ^= self
            .v1
            .mul_low32(&V4x64U::from(_mm256_srli_epi64(self.v0.0, 32)));
        self.v0 += self.mul1;
        self.mul1 ^= self
            .v0
            .mul_low32(&V4x64U::from(_mm256_srli_epi64(self.v1.0, 32)));
        self.v0 += AvxHash::zipper_merge(&self.v1);
        self.v1 += AvxHash::zipper_merge(&self.v0);
    }

    #[target_feature(enable = "avx2")]
    unsafe fn permute(v: &V4x64U) -> V4x64U {
        let indices = V4x64U::new(
            0x0000000200000003,
            0x0000000000000001,
            0x0000000600000007,
            0x0000000400000005,
        );

        V4x64U::from(_mm256_permutevar8x32_epi32(v.0, indices.0))
    }

    #[target_feature(enable = "avx2")]
    unsafe fn modular_reduction(x: &V4x64U, init: &V4x64U) -> V4x64U {
        let top_bits2 = V4x64U::from(_mm256_srli_epi64(x.0, 62));
        let ones = V4x64U::from(_mm256_cmpeq_epi64(x.0, x.0));
        let shifted1_unmasked = *x + *x;
        let top_bits1 = V4x64U::from(_mm256_srli_epi64(x.0, 63));
        let upper_8bytes = V4x64U::from(_mm256_slli_si256(ones.0, 8));
        let shifted2 = shifted1_unmasked + shifted1_unmasked;
        let upper_bit_of_128 = V4x64U::from(_mm256_slli_epi64(upper_8bytes.0, 63));
        let zero = V4x64U::default();
        let new_low_bits2 = V4x64U::from(_mm256_unpacklo_epi64(zero.0, top_bits2.0));
        let shifted1 = shifted1_unmasked.and_not(&upper_bit_of_128);
        let new_low_bits1 = V4x64U::from(_mm256_unpacklo_epi64(zero.0, top_bits1.0));

        *init ^ shifted2 ^ new_low_bits2 ^ shifted1 ^ new_low_bits1
    }

    #[target_feature(enable = "avx2")]
    unsafe fn append(&mut self, data: &[u8]) {
        match self.buffer.fill(data) {
            Filled::Consumed => {}
            Filled::Full(new_data) => {
                let packet = AvxHash::to_lanes(self.buffer.as_slice());
                self.update(packet);

                let mut rest = &new_data[..];
                while rest.len() >= PACKET_SIZE {
                    let packet = AvxHash::to_lanes(&rest);
                    self.update(packet);
                    rest = &rest[PACKET_SIZE..];
                }

                self.buffer.set_to(rest);
            }
        }
    }
}