1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#![doc(html_root_url = "https://docs.rs/high_mem_utils/0.1.1/")]
#![feature(vec_leak, untagged_unions)]

/*!
This crate provides high-level memory abstractions used for ensure memory and exception safety in some
patterns.

High-level signifies that it only brings safe abstractions for some cases of transmute and others unsafe
functions in the mem or ptr module,does not provide a custom allocator or garbage collector neither depends
on the [core::alloc] unstable lib.

At the moment this crate is nightly only,this will change if the features [`vec_leak`] and
[`untagged_unions`] get stabilished.

# Examples

```
use high_mem_utils::{CatchStr, DontDrop, DropBy};

let mut string = String::from("Hello world!");
let catch = CatchStr::new(string.clone());

assert_eq!(catch.leaked().to_string(), string); // leaked returns &&mut str,not use to_string 
                                                // is a bit difficult cast rigth now

assert_eq!(catch.seal(), string); // catch consumed
let mut a = [1, 2, 3];

{
    let elem = DropBy::new([2, 3, 4], |e| { a = e.clone(); });

    assert_eq!(*elem, [2, 3, 4]);
}
    
assert_eq!(a, [2, 3, 4]);

unsafe { 
    let b = DontDrop([1, 2, 3]); // we're not dropping here because we will have two variables 
                                 // pointing to the same memory and "b" lives for shorter
    a = [0; 3];
    b.as_ptr().copy_to(a.as_mut_ptr(), 3);
}

assert_eq!(a, [1, 2, 3]);
```

[`vec_leak`]: https://github.com/rust-lang/rust/issues/62195
[`untagged_unions`]: https://github.com/rust-lang/rust/issues/32836
[core::alloc]: https://doc.rust-lang.org/core/alloc/index.html
*/

use std::mem::{self, ManuallyDrop};
use std::ops::{Deref, DerefMut};

/// An union type that can be leaked or sealed(owned),useful when you want to give temporal global access to a particular value.
pub union Catch<'a, T> {
    leaked: &'a mut T,
    sealed: ManuallyDrop<Box<T>>,
}

impl<'a, T> Catch<'a, T> {
    /// Creates a new Catch with a leak, you can lately get the underlying value and consume the Catch
    /// with the [`seal`](#method.seal) method.
    pub fn new(a: Box<T>) -> Self {
        Catch {
            leaked: Box::leak(a),
        }
    }

    /// Returns a a reference to the leaked field,'cause the only ways for construct this union returns
    /// a leaked one,for warranty never transmute stack to heap data,this method does not use transmute
    /// implicitly. 
    pub fn leaked(&self) -> &&'a mut T {
        unsafe { &self.leaked }
    }

    /// Consumes the Catch and gets the inner Box\<T\>,preventing the memory leak.
    /// 
    /// This does a call to transmute but,as the only ways to construct this union gives you a leaked one
    /// this never trigger undefined behavior by itself.
    pub fn seal(self) -> Box<T> {
        unsafe { ManuallyDrop::into_inner(self.sealed) }
    }

    /// Consumes the Catch and returns a mutable reference pointing to leaked data.
    pub fn leak(self) -> &'a mut T {
        unsafe { self.leaked }
    } 

    /// Creates a new Catch from a mutable reference to T,without checking if T is in the heap.
    /// 
    /// # Safety
    /// 
    /// This function should only be used with data returned by leak from a safely construct Catch or with
    /// data returned by Box::leak otherwise will trigger undefined behavior if seal is called.
    pub unsafe fn from_leaked(leaked: &'a mut T) -> Self {
        Catch { leaked }
    }
}

/// An union slice that can be leaked or sealed(owned),useful when you want to give temporal global access
/// to a particular sequence.
pub union CatchSeq<'a, T> {
    leaked: &'a mut [T],
    sealed: ManuallyDrop<Box<[T]>>,
}

impl<'a, T> CatchSeq<'a, T> {
    /// Creates a new CatchSeq with a leak, you can lately get the underlying sequence and consume the CatchSeq
    /// with the [`seal`](#method.seal) method.
    pub fn new(a: Vec<T>) -> Self {
        CatchSeq {
            leaked: Vec::leak(a),
        }
    }

    /// Returns a a reference to the leaked field,as the only safe ways for construct this union returns a leaked
    /// one,for warranty never transmute stack to heap data,this method does not use transmute implicitly. 
    pub fn leaked(&self) -> &&'a mut [T] {
        unsafe { &self.leaked }
    }

    /// Consumes the Catch and gets the inner Vec<T>, preventing the memory leak.
    /// 
    /// This does a call to transmute but,as the only safe ways for construct this union returns a leaked
    /// one,this never trigger undefined behavior by itself.
    pub fn seal(self) -> Vec<T> {
        unsafe { ManuallyDrop::into_inner(self.sealed).into_vec() }
    }

    /// Consumes the CatchSeq and returns a mutable reference pointing to leaked data.
    pub fn leak(self) -> &'a mut [T] {
        unsafe { self.leaked }
    } 

    /// Creates a new CatchSeq from a `&mut [T]`,without checking if the referent is in the heap.
    /// 
    /// # Safety
    /// 
    /// This function should only be used with data returned by leak from a safely constructed CatchSeq or
    /// with data returned by Vec::leak otherwise this will trigger undefined behavior if[`seal`](#method.seal)
    /// is called.
    pub unsafe fn from_leaked(leaked: &'a mut [T]) -> Self {
        CatchSeq { leaked }
    }
}

/// An union string that can be leaked or sealed(owned),useful when you want to give temporal global access
/// to a particular string.
pub union CatchStr<'a> {
    leaked: &'a mut str,
    sealed: ManuallyDrop<Box<str>>,
}

impl<'a> CatchStr<'a> {
    /// Creates a new CatchStr with a leak, you can lately get the underlying string and consume the CatchStr
    /// with the [`seal`](#method.seal) method.
    pub fn new(a: String) -> Self {
        CatchStr {
            leaked: Box::leak(a.into_boxed_str()),
        }
    }

    /// Returns a a reference to the leaked field,as the only safe ways for construct this union returns a leaked
    /// one,for warranty never transmute stack to heap data,this method does not use transmute implicitly. 
    pub fn leaked(&self) -> &&'a mut str {
        unsafe { &self.leaked }
    }

    /// Consumes the Catch and gets the inner String, preventing the memory leak.
    /// 
    /// This does a call to transmute but,as the only safe ways for construct this union return a leaked
    /// one,this never trigger undefined behavior by itself.
    pub fn seal(self) -> String {
        unsafe { ManuallyDrop::into_inner(self.sealed).into_string() }
    }

    /// Consumes the CatchStr and returns a mutable reference pointing to leaked data.
    pub fn leak(self) -> &'a mut str {
        unsafe { self.leaked }
    } 

    /// Creates a new CatchStr from a `&mut str`,without checking if the referent is in the heap.
    /// 
    /// # Safety
    /// 
    /// This function should only be used with data returned by leak from a safely constructed CatchStr or
    /// with data returned by `Box::leak(s.into_boxed_str())` otherwise this will trigger undefined behavior
    /// if [`seal`](#method.seal) is called.
    pub unsafe fn from_leaked(leaked: &'a mut str) -> Self {
        CatchStr { leaked }
    }
}

/// A wrapper for an implementation of drop that [`mem::take`] the value and [`mem::forget`]s it.
/// 
/// This might be useful if you want assuring that a particular destructor not run if it can lead to
/// a double-free or another memory issue.
/// 
/// This type is particularly not recomended for reference types because as such they can never be null
/// and the value is still dropped. Neither on types with a costly initialization because it replaces the
/// forgotten value with the `Default` one,these values should not implement it anyways.
/// 
/// This type has the same implications that forget except for the fact that this ensures that the value
/// is never dropped even on panic,unless you abort.In general [`DontDropOpt`](./struct.DontDropOpt.html) is preferred.
/// 
/// It derefs to T.
/// 
/// [`mem::take`]: https://doc.rust-lang.org/core/mem/fn.take.html
pub struct DontDrop<T: Default>(pub T);

impl<T: Default> Drop for DontDrop<T> {
    fn drop(&mut self) {
        mem::forget(mem::take(&mut self.0));
    }
}

impl<T: Default> Deref for DontDrop<T> {
    type Target = T;
    
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T: Default> DerefMut for DontDrop<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

/// A wrapper for an implementation of drop that [`mem::forget`] the previous value and replace it with None.
/// 
/// This might be useful if you want assuring that a particular destructor not run if it can lead to
/// a double-free or another memory issue.
/// 
/// This type is particularly not recomended for reference types because as such they can never be null
/// and the value is still dropped.
/// 
/// This type has the same implications that [`mem::forget`] except for the fact that this ensures that the
/// value is never dropped even on panic,unless you abort.
/// 
/// It derefs to Option<T>.
pub struct DontDropOpt<T>(Option<T>);

impl<T> DontDropOpt<T> {
    /// Construct a new `DontDropOpt` from a value,this has no effect if the value is a reference.
    pub fn new(a: T) -> Self {
        DontDropOpt(Some(a))
    }
} 

impl<T> Drop for DontDropOpt<T> {
    fn drop(&mut self) {
        mem::forget(&mut self.0.take());
    }
}

impl<T> Deref for DontDropOpt<T> {
    type Target = Option<T>;
    
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T> DerefMut for DontDropOpt<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

/// A wrapper that calls the given closure at Drop. Useful when you have a conditional assign of one
/// that,once assigned,you want to warranty a call to it with the given T,and then drop it.
/// 
/// It derefs to T.
pub struct DropBy<T, F: FnMut(&mut T)> {
    pub value: T,
    pub clos: F
}

impl<T, F: FnMut(&mut T)> DropBy<T, F> {
    pub fn new(value: T, clos: F) -> Self {
        DropBy {value, clos}
    }
}

impl<T, F: FnMut(&mut T)> Drop for DropBy<T, F> {
    fn drop(&mut self) {
        (self.clos)(&mut self.value)
    }
}

impl<T, F: FnMut(&mut T)> Deref for DropBy<T, F> {
    type Target = T;
    
    fn deref(&self) -> &Self::Target {
        &self.value
    }
}

impl<T, F: FnMut(&mut T)> DerefMut for DropBy<T, F> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.value
    }
}