1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use bevy_math::prelude::*;

use crate::utils::NearZero;

/// Component that defines the linear and angular velocity.
///
/// The linear part is in "unit" per second on each axis, represented as a `Vec3`. (The unit, being your game unit, be it pixel or anything else)
/// The angular part is in radians per second around an axis, represented as a `Quat`
///
/// # Example
///
/// ```
/// # use bevy::prelude::*;
/// # use heron_core::*;
/// # use std::f32::consts::PI;
///
/// fn spawn(commands: &mut Commands) {
///     commands.spawn(todo!("Spawn your sprite/mesh, incl. at least a GlobalTransform"))
///         .with(Body::Sphere { radius: 1.0 })
///         .with(
///             Velocity::from_linear(Vec3::unit_x() * 10.0)
///                 .with_angular(AxisAngle::new(Vec3::unit_z(), 0.5 * PI))
///         );
/// }
/// ```
#[derive(Debug, Copy, Clone, PartialEq, Default)]
pub struct Velocity {
    /// Linear velocity in units-per-second on each axis
    pub linear: Vec3,

    /// Angular velocity in radians-per-second around an axis
    pub angular: AxisAngle,
}

/// An [axis-angle] representation
///
/// [axis-angle]: https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation
#[derive(Debug, Copy, Clone, PartialEq, Default)]
pub struct AxisAngle(Vec3);

impl Velocity {
    /// Returns a linear velocity from a vector
    #[must_use]
    pub fn from_linear(linear: Vec3) -> Self {
        Self {
            linear,
            angular: AxisAngle::default(),
        }
    }

    /// Returns an angular velocity from a vector
    #[must_use]
    pub fn from_angular(angular: AxisAngle) -> Self {
        Self {
            angular,
            linear: Vec3::zero(),
        }
    }

    /// Returns a new version with the given linear velocity
    #[must_use]
    pub fn with_linear(mut self, linear: Vec3) -> Self {
        self.linear = linear;
        self
    }

    /// Returns a new version with the given angular velocity
    #[must_use]
    pub fn with_angular(mut self, angular: AxisAngle) -> Self {
        self.angular = angular;
        self
    }
}

impl From<Vec2> for Velocity {
    fn from(v: Vec2) -> Self {
        Self::from_linear(v.extend(0.0))
    }
}

impl From<Vec3> for Velocity {
    fn from(linear: Vec3) -> Self {
        Self::from_linear(linear)
    }
}

impl From<Velocity> for Vec3 {
    fn from(Velocity { linear, .. }: Velocity) -> Self {
        linear
    }
}

impl From<AxisAngle> for Velocity {
    fn from(angular: AxisAngle) -> Self {
        Self::from_angular(angular)
    }
}

impl From<Quat> for Velocity {
    fn from(quat: Quat) -> Self {
        Self::from_angular(quat.into())
    }
}

impl From<Velocity> for AxisAngle {
    fn from(Velocity { angular, .. }: Velocity) -> Self {
        angular
    }
}

impl From<Velocity> for Quat {
    fn from(Velocity { angular, .. }: Velocity) -> Self {
        angular.into()
    }
}

impl From<Vec3> for AxisAngle {
    fn from(v: Vec3) -> Self {
        Self(v)
    }
}

impl From<AxisAngle> for Vec3 {
    fn from(AxisAngle(v): AxisAngle) -> Self {
        v
    }
}

impl NearZero for Velocity {
    fn is_near_zero(self) -> bool {
        self.linear.is_near_zero() && self.angular.is_near_zero()
    }
}

impl AxisAngle {
    /// Create a new axis-angle
    #[inline]
    #[must_use]
    pub fn new(axis: Vec3, angle: f32) -> Self {
        Self(axis.normalize() * angle)
    }

    /// Squared angle.
    ///
    /// In general faster than `angle` because it doesn't need to perform a square-root
    #[inline]
    #[must_use]
    pub fn angle_squared(self) -> f32 {
        self.0.length_squared()
    }

    /// Angle around the axis.
    ///
    /// For comparison you may consider `angle_squared`, that doesn't need to perform a square root.
    #[inline]
    #[must_use]
    pub fn angle(self) -> f32 {
        self.0.length()
    }

    /// Returns the axis **NOT** normalized.
    #[inline]
    #[must_use]
    pub fn axis(self) -> Vec3 {
        self.0
    }
}

impl NearZero for AxisAngle {
    fn is_near_zero(self) -> bool {
        self.0.is_near_zero()
    }
}

impl From<Quat> for AxisAngle {
    fn from(quat: Quat) -> Self {
        let length = quat.length();
        let (axis, angle) = quat.to_axis_angle();
        Self(axis.normalize() * (angle * length))
    }
}

impl From<AxisAngle> for Quat {
    fn from(axis_angle: AxisAngle) -> Self {
        if axis_angle.is_near_zero() {
            Quat::identity()
        } else {
            let angle = axis_angle.0.length();
            Quat::from_axis_angle(axis_angle.0 / angle, angle)
        }
    }
}