1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
use core::marker::PhantomData;
use core::ops::Add;
use core::ptr::{self, NonNull};

use generic_array::typenum::{Sum, Unsigned, U1};
use generic_array::ArrayLength;

use ring_buffer::{RingBuffer, Uxx};

impl<T, N, U> RingBuffer<T, N, U>
where
    N: Add<U1> + Unsigned,
    Sum<N, U1>: ArrayLength<T>,
    U: Uxx,
{
    /// Splits a statically allocated ring buffer into producer and consumer end points
    pub fn split<'rb>(&'rb mut self) -> (Producer<'rb, T, N, U>, Consumer<'rb, T, N, U>) {
        (
            Producer {
                rb: unsafe { NonNull::new_unchecked(self) },
                _marker: PhantomData,
            },
            Consumer {
                rb: unsafe { NonNull::new_unchecked(self) },
                _marker: PhantomData,
            },
        )
    }
}

/// A ring buffer "consumer"; it can dequeue items from the ring buffer
// NOTE the consumer semantically owns the `head` pointer of the ring buffer
pub struct Consumer<'a, T, N, U = usize>
where
    N: Add<U1> + Unsigned,
    Sum<N, U1>: ArrayLength<T>,
    U: Uxx,
{
    // XXX do we need to use `NonNull` (for soundness) here?
    rb: NonNull<RingBuffer<T, N, U>>,
    _marker: PhantomData<&'a ()>,
}

unsafe impl<'a, T, N, U> Send for Consumer<'a, T, N, U>
where
    N: Add<U1> + Unsigned,
    Sum<N, U1>: ArrayLength<T>,
    T: Send,
    U: Uxx,
{}

/// A ring buffer "producer"; it can enqueue items into the ring buffer
// NOTE the producer semantically owns the `tail` pointer of the ring buffer
pub struct Producer<'a, T, N, U = usize>
where
    N: Add<U1> + Unsigned,
    Sum<N, U1>: ArrayLength<T>,
    U: Uxx,
{
    // XXX do we need to use `NonNull` (for soundness) here?
    rb: NonNull<RingBuffer<T, N, U>>,
    _marker: PhantomData<&'a ()>,
}

unsafe impl<'a, T, N, U> Send for Producer<'a, T, N, U>
where
    N: Add<U1> + Unsigned,
    Sum<N, U1>: ArrayLength<T>,
    T: Send,
    U: Uxx,
{}

macro_rules! impl_ {
    ($uxx:ident) => {
        impl<'a, T, N> Consumer<'a, T, N, $uxx>
        where
            N: Add<U1> + Unsigned,
            Sum<N, U1>: ArrayLength<T>,
        {
            /// Returns if there are any items to dequeue. When this returns true, at least the
            /// first subsequent dequeue will succeed.
            pub fn ready(&self) -> bool {
                let tail = unsafe { self.rb.as_ref().tail.load_acquire() };
                let head = unsafe { self.rb.as_ref().head.load_relaxed() };
                return head != tail;
            }

            /// Returns the item in the front of the queue, or `None` if the queue is empty
            pub fn dequeue(&mut self) -> Option<T> {
                let tail = unsafe { self.rb.as_ref().tail.load_acquire() };
                let head = unsafe { self.rb.as_ref().head.load_relaxed() };

                if head != tail {
                    Some(unsafe { self._dequeue(head) })
                } else {
                    None
                }
            }

            /// Returns the item in the front of the queue, without checking if it's empty
            ///
            /// # Unsafety
            ///
            /// If the queue is empty this is equivalent to calling `mem::uninitialized`
            pub unsafe fn dequeue_unchecked(&mut self) -> T {
                let head = self.rb.as_ref().head.load_relaxed();
                debug_assert_ne!(head, self.rb.as_ref().tail.load_acquire());
                self._dequeue(head)
            }

            unsafe fn _dequeue(&mut self, head: $uxx) -> T {
                let rb = self.rb.as_ref();

                let n = rb.capacity() + 1;
                let buffer = rb.buffer.get_ref();

                let item = ptr::read(buffer.get_unchecked(usize::from(head)));
                rb.head.store_release((head + 1) % n);
                item
            }
        }

        impl<'a, T, N> Producer<'a, T, N, $uxx>
        where
            N: Add<U1> + Unsigned,
            Sum<N, U1>: ArrayLength<T>,
        {
            /// Returns if there is any space to enqueue a new item. When this returns true, at
            /// least the first subsequent enqueue will succeed.
            pub fn ready(&self) -> bool {
                let n = unsafe { self.rb.as_ref().capacity() + 1 };
                let tail = unsafe { self.rb.as_ref().tail.load_relaxed() };
                // NOTE we could replace this `load_acquire` with a `load_relaxed` and this method
                // would be sound on most architectures but that change would result in UB according
                // to the C++ memory model, which is what Rust currently uses, so we err on the side
                // of caution and stick to `load_acquire`. Check issue google#sanitizers#882 for
                // more details.
                let head = unsafe { self.rb.as_ref().head.load_acquire() };
                let next_tail = (tail + 1) % n;
                return next_tail != head;
            }

            /// Adds an `item` to the end of the queue
            ///
            /// Returns back the `item` if the queue is full
            pub fn enqueue(&mut self, item: T) -> Result<(), T> {
                let n = unsafe { self.rb.as_ref().capacity() + 1 };
                let tail = unsafe { self.rb.as_ref().tail.load_relaxed() };
                // NOTE we could replace this `load_acquire` with a `load_relaxed` and this method
                // would be sound on most architectures but that change would result in UB according
                // to the C++ memory model, which is what Rust currently uses, so we err on the side
                // of caution and stick to `load_acquire`. Check issue google#sanitizers#882 for
                // more details.
                let head = unsafe { self.rb.as_ref().head.load_acquire() };
                let next_tail = (tail + 1) % n;
                if next_tail != head {
                    unsafe { self._enqueue(tail, item) };
                    Ok(())
                } else {
                    Err(item)
                }
            }

            /// Adds an `item` to the end of the queue without checking if it's full
            ///
            /// **WARNING** If the queue is full this operation will make the queue appear empty to
            /// the `Consumer`, thus *leaking* (destructors won't run) all the elements that were in
            /// the queue.
            pub fn enqueue_unchecked(&mut self, item: T) {
                unsafe {
                    let tail = self.rb.as_ref().tail.load_relaxed();
                    debug_assert_ne!(
                        (tail + 1) % (self.rb.as_ref().capacity() + 1),
                        self.rb.as_ref().head.load_acquire()
                    );
                    self._enqueue(tail, item);
                }
            }

            unsafe fn _enqueue(&mut self, tail: $uxx, item: T) {
                let rb = self.rb.as_mut();

                let n = rb.capacity() + 1;
                let buffer = rb.buffer.get_mut();

                let next_tail = (tail + 1) % n;
                // NOTE(ptr::write) the memory slot that we are about to write to is
                // uninitialized. We use `ptr::write` to avoid running `T`'s destructor on the
                // uninitialized memory
                ptr::write(buffer.get_unchecked_mut(usize::from(tail)), item);
                rb.tail.store_release(next_tail);
            }
        }
    };
}

#[cfg(feature = "smaller-atomics")]
impl_!(u8);
#[cfg(feature = "smaller-atomics")]
impl_!(u16);
impl_!(usize);

#[cfg(test)]
mod tests {
    use consts::*;
    use RingBuffer;

    #[test]
    fn sanity() {
        let mut rb: RingBuffer<i32, U2> = RingBuffer::new();

        let (mut p, mut c) = rb.split();

        assert_eq!(c.dequeue(), None);

        p.enqueue(0).unwrap();

        assert_eq!(c.dequeue(), Some(0));
    }
}