1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
use crate::alloc::alloc::{alloc, dealloc, handle_alloc_error};
use crate::scopeguard::guard;
use crate::TryReserveError;
use core::alloc::Layout;
use core::hint;
use core::iter::FusedIterator;
use core::marker::PhantomData;
use core::mem;
use core::mem::ManuallyDrop;
use core::ptr::NonNull;

cfg_if! {
    // Use the SSE2 implementation if possible: it allows us to scan 16 buckets
    // at once instead of 8. We don't bother with AVX since it would require
    // runtime dispatch and wouldn't gain us much anyways: the probability of
    // finding a match drops off drastically after the first few buckets.
    //
    // I attempted an implementation on ARM using NEON instructions, but it
    // turns out that most NEON instructions have multi-cycle latency, which in
    // the end outweighs any gains over the generic implementation.
    if #[cfg(all(
        target_feature = "sse2",
        any(target_arch = "x86", target_arch = "x86_64"),
        not(miri)
    ))] {
        mod sse2;
        use sse2 as imp;
    } else {
        #[path = "generic.rs"]
        mod generic;
        use generic as imp;
    }
}

mod bitmask;

use self::bitmask::{BitMask, BitMaskIter};
use self::imp::Group;

// Branch prediction hint. This is currently only available on nightly but it
// consistently improves performance by 10-15%.
#[cfg(feature = "nightly")]
use core::intrinsics::{likely, unlikely};
#[cfg(not(feature = "nightly"))]
#[inline]
fn likely(b: bool) -> bool {
    b
}
#[cfg(not(feature = "nightly"))]
#[inline]
fn unlikely(b: bool) -> bool {
    b
}

#[cfg(feature = "nightly")]
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize {
    to.offset_from(from) as usize
}
#[cfg(not(feature = "nightly"))]
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize {
    (to as usize - from as usize) / mem::size_of::<T>()
}

/// Whether memory allocation errors should return an error or abort.
#[derive(Copy, Clone)]
enum Fallibility {
    Fallible,
    Infallible,
}

impl Fallibility {
    /// Error to return on capacity overflow.
    #[cfg_attr(feature = "inline-more", inline)]
    fn capacity_overflow(self) -> TryReserveError {
        match self {
            Fallibility::Fallible => TryReserveError::CapacityOverflow,
            Fallibility::Infallible => panic!("Hash table capacity overflow"),
        }
    }

    /// Error to return on allocation error.
    #[cfg_attr(feature = "inline-more", inline)]
    fn alloc_err(self, layout: Layout) -> TryReserveError {
        match self {
            Fallibility::Fallible => TryReserveError::AllocError { layout },
            Fallibility::Infallible => handle_alloc_error(layout),
        }
    }
}

/// Control byte value for an empty bucket.
const EMPTY: u8 = 0b1111_1111;

/// Control byte value for a deleted bucket.
const DELETED: u8 = 0b1000_0000;

/// Checks whether a control byte represents a full bucket (top bit is clear).
#[inline]
fn is_full(ctrl: u8) -> bool {
    ctrl & 0x80 == 0
}

/// Checks whether a control byte represents a special value (top bit is set).
#[inline]
fn is_special(ctrl: u8) -> bool {
    ctrl & 0x80 != 0
}

/// Checks whether a special control value is EMPTY (just check 1 bit).
#[inline]
fn special_is_empty(ctrl: u8) -> bool {
    debug_assert!(is_special(ctrl));
    ctrl & 0x01 != 0
}

/// Primary hash function, used to select the initial bucket to probe from.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn h1(hash: u64) -> usize {
    // On 32-bit platforms we simply ignore the higher hash bits.
    hash as usize
}

/// Secondary hash function, saved in the low 7 bits of the control byte.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn h2(hash: u64) -> u8 {
    // Grab the top 7 bits of the hash. While the hash is normally a full 64-bit
    // value, some hash functions (such as FxHash) produce a usize result
    // instead, which means that the top 32 bits are 0 on 32-bit platforms.
    let hash_len = usize::min(mem::size_of::<usize>(), mem::size_of::<u64>());
    let top7 = hash >> (hash_len * 8 - 7);
    (top7 & 0x7f) as u8 // truncation
}

/// Probe sequence based on triangular numbers, which is guaranteed (since our
/// table size is a power of two) to visit every group of elements exactly once.
///
/// A triangular probe has us jump by 1 more group every time. So first we
/// jump by 1 group (meaning we just continue our linear scan), then 2 groups
/// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on.
///
/// Proof that the probe will visit every group in the table:
/// <https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/>
struct ProbeSeq {
    bucket_mask: usize,
    pos: usize,
    stride: usize,
}

impl Iterator for ProbeSeq {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        // We should have found an empty bucket by now and ended the probe.
        debug_assert!(
            self.stride <= self.bucket_mask,
            "Went past end of probe sequence"
        );

        let result = self.pos;
        self.stride += Group::WIDTH;
        self.pos += self.stride;
        self.pos &= self.bucket_mask;
        Some(result)
    }
}

/// Returns the number of buckets needed to hold the given number of items,
/// taking the maximum load factor into account.
///
/// Returns `None` if an overflow occurs.
// Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258
#[cfg_attr(target_os = "emscripten", inline(never))]
#[cfg_attr(not(target_os = "emscripten"), inline)]
fn capacity_to_buckets(cap: usize) -> Option<usize> {
    debug_assert_ne!(cap, 0);

    // For small tables we require at least 1 empty bucket so that lookups are
    // guaranteed to terminate if an element doesn't exist in the table.
    if cap < 8 {
        // We don't bother with a table size of 2 buckets since that can only
        // hold a single element. Instead we skip directly to a 4 bucket table
        // which can hold 3 elements.
        return Some(if cap < 4 { 4 } else { 8 });
    }

    // Otherwise require 1/8 buckets to be empty (87.5% load)
    //
    // Be careful when modifying this, calculate_layout relies on the
    // overflow check here.
    let adjusted_cap = cap.checked_mul(8)? / 7;

    // Any overflows will have been caught by the checked_mul. Also, any
    // rounding errors from the division above will be cleaned up by
    // next_power_of_two (which can't overflow because of the previous divison).
    Some(adjusted_cap.next_power_of_two())
}

/// Returns the maximum effective capacity for the given bucket mask, taking
/// the maximum load factor into account.
#[inline]
fn bucket_mask_to_capacity(bucket_mask: usize) -> usize {
    if bucket_mask < 8 {
        // For tables with 1/2/4/8 buckets, we always reserve one empty slot.
        // Keep in mind that the bucket mask is one less than the bucket count.
        bucket_mask
    } else {
        // For larger tables we reserve 12.5% of the slots as empty.
        ((bucket_mask + 1) / 8) * 7
    }
}

/// Returns a Layout which describes the allocation required for a hash table,
/// and the offset of the control bytes in the allocation.
/// (the offset is also one past last element of buckets)
///
/// Returns `None` if an overflow occurs.
#[cfg_attr(feature = "inline-more", inline)]
#[cfg(feature = "nightly")]
fn calculate_layout<T>(buckets: usize) -> Option<(Layout, usize)> {
    debug_assert!(buckets.is_power_of_two());

    // Array of buckets
    let data = Layout::array::<T>(buckets).ok()?;

    // Array of control bytes. This must be aligned to the group size.
    //
    // We add `Group::WIDTH` control bytes at the end of the array which
    // replicate the bytes at the start of the array and thus avoids the need to
    // perform bounds-checking while probing.
    //
    // There is no possible overflow here since buckets is a power of two and
    // Group::WIDTH is a small number.
    let ctrl = unsafe { Layout::from_size_align_unchecked(buckets + Group::WIDTH, Group::WIDTH) };

    data.extend(ctrl).ok()
}

/// Returns a Layout which describes the allocation required for a hash table,
/// and the offset of the control bytes in the allocation.
/// (the offset is also one past last element of buckets)
///
/// Returns `None` if an overflow occurs.
#[cfg_attr(feature = "inline-more", inline)]
#[cfg(not(feature = "nightly"))]
fn calculate_layout<T>(buckets: usize) -> Option<(Layout, usize)> {
    debug_assert!(buckets.is_power_of_two());

    // Manual layout calculation since Layout methods are not yet stable.
    let ctrl_align = usize::max(mem::align_of::<T>(), Group::WIDTH);
    let ctrl_offset = mem::size_of::<T>()
        .checked_mul(buckets)?
        .checked_add(ctrl_align - 1)?
        & !(ctrl_align - 1);
    let len = ctrl_offset.checked_add(buckets + Group::WIDTH)?;

    Some((
        unsafe { Layout::from_size_align_unchecked(len, ctrl_align) },
        ctrl_offset,
    ))
}

/// A reference to a hash table bucket containing a `T`.
///
/// This is usually just a pointer to the element itself. However if the element
/// is a ZST, then we instead track the index of the element in the table so
/// that `erase` works properly.
pub struct Bucket<T> {
    // Actually it is pointer to next element than element itself
    // this is needed to maintain pointer arithmetic invariants
    // keeping direct pointer to element introduces difficulty.
    // Using `NonNull` for variance and niche layout
    ptr: NonNull<T>,
}

// This Send impl is needed for rayon support. This is safe since Bucket is
// never exposed in a public API.
unsafe impl<T> Send for Bucket<T> {}

impl<T> Clone for Bucket<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn clone(&self) -> Self {
        Self { ptr: self.ptr }
    }
}

impl<T> Bucket<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn from_base_index(base: NonNull<T>, index: usize) -> Self {
        let ptr = if mem::size_of::<T>() == 0 {
            // won't overflow because index must be less than length
            (index + 1) as *mut T
        } else {
            base.as_ptr().sub(index)
        };
        Self {
            ptr: NonNull::new_unchecked(ptr),
        }
    }
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn to_base_index(&self, base: NonNull<T>) -> usize {
        if mem::size_of::<T>() == 0 {
            self.ptr.as_ptr() as usize - 1
        } else {
            offset_from(base.as_ptr(), self.ptr.as_ptr())
        }
    }
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn as_ptr(&self) -> *mut T {
        if mem::size_of::<T>() == 0 {
            // Just return an arbitrary ZST pointer which is properly aligned
            mem::align_of::<T>() as *mut T
        } else {
            self.ptr.as_ptr().sub(1)
        }
    }
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn next_n(&self, offset: usize) -> Self {
        let ptr = if mem::size_of::<T>() == 0 {
            (self.ptr.as_ptr() as usize + offset) as *mut T
        } else {
            self.ptr.as_ptr().sub(offset)
        };
        Self {
            ptr: NonNull::new_unchecked(ptr),
        }
    }
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn drop(&self) {
        self.as_ptr().drop_in_place();
    }
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn read(&self) -> T {
        self.as_ptr().read()
    }
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn write(&self, val: T) {
        self.as_ptr().write(val);
    }
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn as_ref<'a>(&self) -> &'a T {
        &*self.as_ptr()
    }
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn as_mut<'a>(&self) -> &'a mut T {
        &mut *self.as_ptr()
    }
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) {
        self.as_ptr().copy_from_nonoverlapping(other.as_ptr(), 1);
    }
}

/// A raw hash table with an unsafe API.
pub struct RawTable<T> {
    // Mask to get an index from a hash value. The value is one less than the
    // number of buckets in the table.
    bucket_mask: usize,

    // [Padding], T1, T2, ..., Tlast, C1, C2, ...
    //                                ^ points here
    ctrl: NonNull<u8>,

    // Number of elements that can be inserted before we need to grow the table
    growth_left: usize,

    // Number of elements in the table, only really used by len()
    items: usize,

    // Tell dropck that we own instances of T.
    marker: PhantomData<T>,
}

impl<T> RawTable<T> {
    /// Creates a new empty hash table without allocating any memory.
    ///
    /// In effect this returns a table with exactly 1 bucket. However we can
    /// leave the data pointer dangling since that bucket is never written to
    /// due to our load factor forcing us to always have at least 1 free bucket.
    #[cfg_attr(feature = "inline-more", inline)]
    pub const fn new() -> Self {
        Self {
            // Be careful to cast the entire slice to a raw pointer.
            ctrl: unsafe { NonNull::new_unchecked(Group::static_empty() as *const _ as *mut u8) },
            bucket_mask: 0,
            items: 0,
            growth_left: 0,
            marker: PhantomData,
        }
    }

    /// Allocates a new hash table with the given number of buckets.
    ///
    /// The control bytes are left uninitialized.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn new_uninitialized(
        buckets: usize,
        fallability: Fallibility,
    ) -> Result<Self, TryReserveError> {
        debug_assert!(buckets.is_power_of_two());

        // Avoid `Option::ok_or_else` because it bloats LLVM IR.
        let (layout, ctrl_offset) = match calculate_layout::<T>(buckets) {
            Some(lco) => lco,
            None => return Err(fallability.capacity_overflow()),
        };
        let ptr = match NonNull::new(alloc(layout)) {
            Some(ptr) => ptr,
            None => return Err(fallability.alloc_err(layout)),
        };
        let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset));
        Ok(Self {
            ctrl,
            bucket_mask: buckets - 1,
            items: 0,
            growth_left: bucket_mask_to_capacity(buckets - 1),
            marker: PhantomData,
        })
    }

    /// Attempts to allocate a new hash table with at least enough capacity
    /// for inserting the given number of elements without reallocating.
    fn fallible_with_capacity(
        capacity: usize,
        fallability: Fallibility,
    ) -> Result<Self, TryReserveError> {
        if capacity == 0 {
            Ok(Self::new())
        } else {
            unsafe {
                // Avoid `Option::ok_or_else` because it bloats LLVM IR.
                let buckets = match capacity_to_buckets(capacity) {
                    Some(buckets) => buckets,
                    None => return Err(fallability.capacity_overflow()),
                };
                let result = Self::new_uninitialized(buckets, fallability)?;
                result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes());

                Ok(result)
            }
        }
    }

    /// Attempts to allocate a new hash table with at least enough capacity
    /// for inserting the given number of elements without reallocating.
    #[cfg(feature = "raw")]
    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
        Self::fallible_with_capacity(capacity, Fallibility::Fallible)
    }

    /// Allocates a new hash table with at least enough capacity for inserting
    /// the given number of elements without reallocating.
    pub fn with_capacity(capacity: usize) -> Self {
        // Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
        match Self::fallible_with_capacity(capacity, Fallibility::Infallible) {
            Ok(capacity) => capacity,
            Err(_) => unsafe { hint::unreachable_unchecked() },
        }
    }

    /// Deallocates the table without dropping any entries.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn free_buckets(&mut self) {
        // Avoid `Option::unwrap_or_else` because it bloats LLVM IR.
        let (layout, ctrl_offset) = match calculate_layout::<T>(self.buckets()) {
            Some(lco) => lco,
            None => hint::unreachable_unchecked(),
        };
        dealloc(self.ctrl.as_ptr().sub(ctrl_offset), layout);
    }

    /// Returns pointer to one past last element of data table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn data_end(&self) -> NonNull<T> {
        NonNull::new_unchecked(self.ctrl.as_ptr() as *mut T)
    }

    /// Returns pointer to start of data table.
    #[cfg_attr(feature = "inline-more", inline)]
    #[cfg(feature = "nightly")]
    pub unsafe fn data_start(&self) -> *mut T {
        self.data_end().as_ptr().wrapping_sub(self.buckets())
    }

    /// Returns the index of a bucket from a `Bucket`.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn bucket_index(&self, bucket: &Bucket<T>) -> usize {
        bucket.to_base_index(self.data_end())
    }

    /// Returns a pointer to a control byte.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn ctrl(&self, index: usize) -> *mut u8 {
        debug_assert!(index < self.num_ctrl_bytes());
        self.ctrl.as_ptr().add(index)
    }

    /// Returns a pointer to an element in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn bucket(&self, index: usize) -> Bucket<T> {
        debug_assert_ne!(self.bucket_mask, 0);
        debug_assert!(index < self.buckets());
        Bucket::from_base_index(self.data_end(), index)
    }

    /// Erases an element from the table without dropping it.
    #[cfg_attr(feature = "inline-more", inline)]
    #[deprecated(since = "0.8.1", note = "use erase or remove instead")]
    pub unsafe fn erase_no_drop(&mut self, item: &Bucket<T>) {
        let index = self.bucket_index(item);
        debug_assert!(is_full(*self.ctrl(index)));
        let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask;
        let empty_before = Group::load(self.ctrl(index_before)).match_empty();
        let empty_after = Group::load(self.ctrl(index)).match_empty();

        // If we are inside a continuous block of Group::WIDTH full or deleted
        // cells then a probe window may have seen a full block when trying to
        // insert. We therefore need to keep that block non-empty so that
        // lookups will continue searching to the next probe window.
        //
        // Note that in this context `leading_zeros` refers to the bytes at the
        // end of a group, while `trailing_zeros` refers to the bytes at the
        // begining of a group.
        let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH {
            DELETED
        } else {
            self.growth_left += 1;
            EMPTY
        };
        self.set_ctrl(index, ctrl);
        self.items -= 1;
    }

    /// Erases an element from the table, dropping it in place.
    #[cfg_attr(feature = "inline-more", inline)]
    #[allow(clippy::needless_pass_by_value)]
    #[allow(deprecated)]
    pub unsafe fn erase(&mut self, item: Bucket<T>) {
        // Erase the element from the table first since drop might panic.
        self.erase_no_drop(&item);
        item.drop();
    }

    /// Finds and erases an element from the table, dropping it in place.
    /// Returns true if an element was found.
    #[cfg(feature = "raw")]
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn erase_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> bool {
        // Avoid `Option::map` because it bloats LLVM IR.
        if let Some(bucket) = self.find(hash, eq) {
            unsafe { self.erase(bucket) };
            true
        } else {
            false
        }
    }

    /// Removes an element from the table, returning it.
    #[cfg_attr(feature = "inline-more", inline)]
    #[allow(clippy::needless_pass_by_value)]
    #[allow(deprecated)]
    pub unsafe fn remove(&mut self, item: Bucket<T>) -> T {
        self.erase_no_drop(&item);
        item.read()
    }

    /// Finds and removes an element from the table, returning it.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn remove_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<T> {
        // Avoid `Option::map` because it bloats LLVM IR.
        match self.find(hash, eq) {
            Some(bucket) => Some(unsafe { self.remove(bucket) }),
            None => None,
        }
    }

    /// Returns an iterator for a probe sequence on the table.
    ///
    /// This iterator never terminates, but is guaranteed to visit each bucket
    /// group exactly once. The loop using `probe_seq` must terminate upon
    /// reaching a group containing an empty bucket.
    #[cfg_attr(feature = "inline-more", inline)]
    fn probe_seq(&self, hash: u64) -> ProbeSeq {
        ProbeSeq {
            bucket_mask: self.bucket_mask,
            pos: h1(hash) & self.bucket_mask,
            stride: 0,
        }
    }

    /// Sets a control byte, and possibly also the replicated control byte at
    /// the end of the array.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn set_ctrl(&self, index: usize, ctrl: u8) {
        // Replicate the first Group::WIDTH control bytes at the end of
        // the array without using a branch:
        // - If index >= Group::WIDTH then index == index2.
        // - Otherwise index2 == self.bucket_mask + 1 + index.
        //
        // The very last replicated control byte is never actually read because
        // we mask the initial index for unaligned loads, but we write it
        // anyways because it makes the set_ctrl implementation simpler.
        //
        // If there are fewer buckets than Group::WIDTH then this code will
        // replicate the buckets at the end of the trailing group. For example
        // with 2 buckets and a group size of 4, the control bytes will look
        // like this:
        //
        //     Real    |             Replicated
        // ---------------------------------------------
        // | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] |
        // ---------------------------------------------
        let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH;

        *self.ctrl(index) = ctrl;
        *self.ctrl(index2) = ctrl;
    }

    /// Searches for an empty or deleted bucket which is suitable for inserting
    /// a new element.
    ///
    /// There must be at least 1 empty bucket in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    fn find_insert_slot(&self, hash: u64) -> usize {
        for pos in self.probe_seq(hash) {
            unsafe {
                let group = Group::load(self.ctrl(pos));
                if let Some(bit) = group.match_empty_or_deleted().lowest_set_bit() {
                    let result = (pos + bit) & self.bucket_mask;

                    // In tables smaller than the group width, trailing control
                    // bytes outside the range of the table are filled with
                    // EMPTY entries. These will unfortunately trigger a
                    // match, but once masked may point to a full bucket that
                    // is already occupied. We detect this situation here and
                    // perform a second scan starting at the begining of the
                    // table. This second scan is guaranteed to find an empty
                    // slot (due to the load factor) before hitting the trailing
                    // control bytes (containing EMPTY).
                    if unlikely(is_full(*self.ctrl(result))) {
                        debug_assert!(self.bucket_mask < Group::WIDTH);
                        debug_assert_ne!(pos, 0);
                        return Group::load_aligned(self.ctrl(0))
                            .match_empty_or_deleted()
                            .lowest_set_bit_nonzero();
                    } else {
                        return result;
                    }
                }
            }
        }

        // probe_seq never returns.
        unreachable!();
    }

    /// Marks all table buckets as empty without dropping their contents.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn clear_no_drop(&mut self) {
        if !self.is_empty_singleton() {
            unsafe {
                self.ctrl(0).write_bytes(EMPTY, self.num_ctrl_bytes());
            }
        }
        self.items = 0;
        self.growth_left = bucket_mask_to_capacity(self.bucket_mask);
    }

    /// Removes all elements from the table without freeing the backing memory.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn clear(&mut self) {
        // Ensure that the table is reset even if one of the drops panic
        let self_ = guard(self, |self_| self_.clear_no_drop());

        if mem::needs_drop::<T>() && self_.len() != 0 {
            unsafe {
                for item in self_.iter() {
                    item.drop();
                }
            }
        }
    }

    /// Shrinks the table to fit `max(self.len(), min_size)` elements.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn shrink_to(&mut self, min_size: usize, hasher: impl Fn(&T) -> u64) {
        // Calculate the minimal number of elements that we need to reserve
        // space for.
        let min_size = usize::max(self.items, min_size);
        if min_size == 0 {
            *self = Self::new();
            return;
        }

        // Calculate the number of buckets that we need for this number of
        // elements. If the calculation overflows then the requested bucket
        // count must be larger than what we have right and nothing needs to be
        // done.
        let min_buckets = match capacity_to_buckets(min_size) {
            Some(buckets) => buckets,
            None => return,
        };

        // If we have more buckets than we need, shrink the table.
        if min_buckets < self.buckets() {
            // Fast path if the table is empty
            if self.items == 0 {
                *self = Self::with_capacity(min_size)
            } else {
                // Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
                if self
                    .resize(min_size, hasher, Fallibility::Infallible)
                    .is_err()
                {
                    unsafe { hint::unreachable_unchecked() }
                }
            }
        }
    }

    /// Ensures that at least `additional` items can be inserted into the table
    /// without reallocation.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) {
        if additional > self.growth_left {
            // Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
            if self
                .reserve_rehash(additional, hasher, Fallibility::Infallible)
                .is_err()
            {
                unsafe { hint::unreachable_unchecked() }
            }
        }
    }

    /// Tries to ensure that at least `additional` items can be inserted into
    /// the table without reallocation.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn try_reserve(
        &mut self,
        additional: usize,
        hasher: impl Fn(&T) -> u64,
    ) -> Result<(), TryReserveError> {
        if additional > self.growth_left {
            self.reserve_rehash(additional, hasher, Fallibility::Fallible)
        } else {
            Ok(())
        }
    }

    /// Out-of-line slow path for `reserve` and `try_reserve`.
    #[cold]
    #[inline(never)]
    fn reserve_rehash(
        &mut self,
        additional: usize,
        hasher: impl Fn(&T) -> u64,
        fallability: Fallibility,
    ) -> Result<(), TryReserveError> {
        // Avoid `Option::ok_or_else` because it bloats LLVM IR.
        let new_items = match self.items.checked_add(additional) {
            Some(new_items) => new_items,
            None => return Err(fallability.capacity_overflow()),
        };
        let full_capacity = bucket_mask_to_capacity(self.bucket_mask);
        if new_items <= full_capacity / 2 {
            // Rehash in-place without re-allocating if we have plenty of spare
            // capacity that is locked up due to DELETED entries.
            self.rehash_in_place(hasher);
            Ok(())
        } else {
            // Otherwise, conservatively resize to at least the next size up
            // to avoid churning deletes into frequent rehashes.
            self.resize(
                usize::max(new_items, full_capacity + 1),
                hasher,
                fallability,
            )
        }
    }

    /// Rehashes the contents of the table in place (i.e. without changing the
    /// allocation).
    ///
    /// If `hasher` panics then some the table's contents may be lost.
    fn rehash_in_place(&mut self, hasher: impl Fn(&T) -> u64) {
        unsafe {
            // Bulk convert all full control bytes to DELETED, and all DELETED
            // control bytes to EMPTY. This effectively frees up all buckets
            // containing a DELETED entry.
            for i in (0..self.buckets()).step_by(Group::WIDTH) {
                let group = Group::load_aligned(self.ctrl(i));
                let group = group.convert_special_to_empty_and_full_to_deleted();
                group.store_aligned(self.ctrl(i));
            }

            // Fix up the trailing control bytes. See the comments in set_ctrl
            // for the handling of tables smaller than the group width.
            if self.buckets() < Group::WIDTH {
                self.ctrl(0)
                    .copy_to(self.ctrl(Group::WIDTH), self.buckets());
            } else {
                self.ctrl(0)
                    .copy_to(self.ctrl(self.buckets()), Group::WIDTH);
            }

            // If the hash function panics then properly clean up any elements
            // that we haven't rehashed yet. We unfortunately can't preserve the
            // element since we lost their hash and have no way of recovering it
            // without risking another panic.
            let mut guard = guard(self, |self_| {
                if mem::needs_drop::<T>() {
                    for i in 0..self_.buckets() {
                        if *self_.ctrl(i) == DELETED {
                            self_.set_ctrl(i, EMPTY);
                            self_.bucket(i).drop();
                            self_.items -= 1;
                        }
                    }
                }
                self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items;
            });

            // At this point, DELETED elements are elements that we haven't
            // rehashed yet. Find them and re-insert them at their ideal
            // position.
            'outer: for i in 0..guard.buckets() {
                if *guard.ctrl(i) != DELETED {
                    continue;
                }
                'inner: loop {
                    // Hash the current item
                    let item = guard.bucket(i);
                    let hash = hasher(item.as_ref());

                    // Search for a suitable place to put it
                    let new_i = guard.find_insert_slot(hash);

                    // Probing works by scanning through all of the control
                    // bytes in groups, which may not be aligned to the group
                    // size. If both the new and old position fall within the
                    // same unaligned group, then there is no benefit in moving
                    // it and we can just continue to the next item.
                    let probe_index = |pos: usize| {
                        (pos.wrapping_sub(guard.probe_seq(hash).pos) & guard.bucket_mask)
                            / Group::WIDTH
                    };
                    if likely(probe_index(i) == probe_index(new_i)) {
                        guard.set_ctrl(i, h2(hash));
                        continue 'outer;
                    }

                    // We are moving the current item to a new position. Write
                    // our H2 to the control byte of the new position.
                    let prev_ctrl = *guard.ctrl(new_i);
                    guard.set_ctrl(new_i, h2(hash));

                    if prev_ctrl == EMPTY {
                        // If the target slot is empty, simply move the current
                        // element into the new slot and clear the old control
                        // byte.
                        guard.set_ctrl(i, EMPTY);
                        guard.bucket(new_i).copy_from_nonoverlapping(&item);
                        continue 'outer;
                    } else {
                        // If the target slot is occupied, swap the two elements
                        // and then continue processing the element that we just
                        // swapped into the old slot.
                        debug_assert_eq!(prev_ctrl, DELETED);
                        mem::swap(guard.bucket(new_i).as_mut(), item.as_mut());
                        continue 'inner;
                    }
                }
            }

            guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items;
            mem::forget(guard);
        }
    }

    /// Allocates a new table of a different size and moves the contents of the
    /// current table into it.
    fn resize(
        &mut self,
        capacity: usize,
        hasher: impl Fn(&T) -> u64,
        fallability: Fallibility,
    ) -> Result<(), TryReserveError> {
        unsafe {
            debug_assert!(self.items <= capacity);

            // Allocate and initialize the new table.
            let mut new_table = Self::fallible_with_capacity(capacity, fallability)?;
            new_table.growth_left -= self.items;
            new_table.items = self.items;

            // The hash function may panic, in which case we simply free the new
            // table without dropping any elements that may have been copied into
            // it.
            //
            // This guard is also used to free the old table on success, see
            // the comment at the bottom of this function.
            let mut new_table = guard(ManuallyDrop::new(new_table), |new_table| {
                if !new_table.is_empty_singleton() {
                    new_table.free_buckets();
                }
            });

            // Copy all elements to the new table.
            for item in self.iter() {
                // This may panic.
                let hash = hasher(item.as_ref());

                // We can use a simpler version of insert() here since:
                // - there are no DELETED entries.
                // - we know there is enough space in the table.
                // - all elements are unique.
                let index = new_table.find_insert_slot(hash);
                new_table.set_ctrl(index, h2(hash));
                new_table.bucket(index).copy_from_nonoverlapping(&item);
            }

            // We successfully copied all elements without panicking. Now replace
            // self with the new table. The old table will have its memory freed but
            // the items will not be dropped (since they have been moved into the
            // new table).
            mem::swap(self, &mut new_table);

            Ok(())
        }
    }

    /// Inserts a new element into the table, and returns its raw bucket.
    ///
    /// This does not check if the given element already exists in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket<T> {
        unsafe {
            let mut index = self.find_insert_slot(hash);

            // We can avoid growing the table once we have reached our load
            // factor if we are replacing a tombstone. This works since the
            // number of EMPTY slots does not change in this case.
            let old_ctrl = *self.ctrl(index);
            if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) {
                self.reserve(1, hasher);
                index = self.find_insert_slot(hash);
            }

            let bucket = self.bucket(index);
            self.growth_left -= special_is_empty(old_ctrl) as usize;
            self.set_ctrl(index, h2(hash));
            bucket.write(value);
            self.items += 1;
            bucket
        }
    }

    /// Inserts a new element into the table, and returns a mutable reference to it.
    ///
    /// This does not check if the given element already exists in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn insert_entry(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> &mut T {
        unsafe { self.insert(hash, value, hasher).as_mut() }
    }

    /// Inserts a new element into the table, without growing the table.
    ///
    /// There must be enough space in the table to insert the new element.
    ///
    /// This does not check if the given element already exists in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    #[cfg(any(feature = "raw", feature = "rustc-internal-api"))]
    pub fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket<T> {
        unsafe {
            let index = self.find_insert_slot(hash);
            let bucket = self.bucket(index);

            // If we are replacing a DELETED entry then we don't need to update
            // the load counter.
            let old_ctrl = *self.ctrl(index);
            self.growth_left -= special_is_empty(old_ctrl) as usize;

            self.set_ctrl(index, h2(hash));
            bucket.write(value);
            self.items += 1;
            bucket
        }
    }

    /// Temporary removes a bucket, applying the given function to the removed
    /// element and optionally put back the returned value in the same bucket.
    ///
    /// Returns `true` if the bucket still contains an element
    ///
    /// This does not check if the given bucket is actually occupied.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn replace_bucket_with<F>(&mut self, bucket: Bucket<T>, f: F) -> bool
    where
        F: FnOnce(T) -> Option<T>,
    {
        let index = self.bucket_index(&bucket);
        let old_ctrl = *self.ctrl(index);
        debug_assert!(is_full(old_ctrl));
        let old_growth_left = self.growth_left;
        let item = self.remove(bucket);
        if let Some(new_item) = f(item) {
            self.growth_left = old_growth_left;
            self.set_ctrl(index, old_ctrl);
            self.items += 1;
            self.bucket(index).write(new_item);
            true
        } else {
            false
        }
    }

    /// Searches for an element in the table.
    #[inline]
    pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option<Bucket<T>> {
        unsafe {
            for bucket in self.iter_hash(hash) {
                let elm = bucket.as_ref();
                if likely(eq(elm)) {
                    return Some(bucket);
                }
            }
            None
        }
    }

    /// Gets a reference to an element in the table.
    #[inline]
    pub fn get(&self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&T> {
        // Avoid `Option::map` because it bloats LLVM IR.
        match self.find(hash, eq) {
            Some(bucket) => Some(unsafe { bucket.as_ref() }),
            None => None,
        }
    }

    /// Gets a mutable reference to an element in the table.
    #[inline]
    pub fn get_mut(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&mut T> {
        // Avoid `Option::map` because it bloats LLVM IR.
        match self.find(hash, eq) {
            Some(bucket) => Some(unsafe { bucket.as_mut() }),
            None => None,
        }
    }

    /// Returns the number of elements the map can hold without reallocating.
    ///
    /// This number is a lower bound; the table might be able to hold
    /// more, but is guaranteed to be able to hold at least this many.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn capacity(&self) -> usize {
        self.items + self.growth_left
    }

    /// Returns the number of elements in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn len(&self) -> usize {
        self.items
    }

    /// Returns the number of buckets in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn buckets(&self) -> usize {
        self.bucket_mask + 1
    }

    /// Returns the number of control bytes in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    fn num_ctrl_bytes(&self) -> usize {
        self.bucket_mask + 1 + Group::WIDTH
    }

    /// Returns whether this table points to the empty singleton with a capacity
    /// of 0.
    #[cfg_attr(feature = "inline-more", inline)]
    fn is_empty_singleton(&self) -> bool {
        self.bucket_mask == 0
    }

    /// Returns an iterator over every element in the table. It is up to
    /// the caller to ensure that the `RawTable` outlives the `RawIter`.
    /// Because we cannot make the `next` method unsafe on the `RawIter`
    /// struct, we have to make the `iter` method unsafe.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn iter(&self) -> RawIter<T> {
        let data = Bucket::from_base_index(self.data_end(), 0);
        RawIter {
            iter: RawIterRange::new(self.ctrl.as_ptr(), data, self.buckets()),
            items: self.items,
        }
    }

    /// Returns an iterator over occupied buckets that could match a given hash.
    ///
    /// In rare cases, the iterator may return a bucket with a different hash.
    ///
    /// It is up to the caller to ensure that the `RawTable` outlives the
    /// `RawIterHash`. Because we cannot make the `next` method unsafe on the
    /// `RawIterHash` struct, we have to make the `iter_hash` method unsafe.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<'_, T> {
        RawIterHash::new(self, hash)
    }

    /// Returns an iterator which removes all elements from the table without
    /// freeing the memory.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn drain(&mut self) -> RawDrain<'_, T> {
        unsafe {
            let iter = self.iter();
            self.drain_iter_from(iter)
        }
    }

    /// Returns an iterator which removes all elements from the table without
    /// freeing the memory.
    ///
    /// Iteration starts at the provided iterator's current location.
    ///
    /// It is up to the caller to ensure that the iterator is valid for this
    /// `RawTable` and covers all items that remain in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn drain_iter_from(&mut self, iter: RawIter<T>) -> RawDrain<'_, T> {
        debug_assert_eq!(iter.len(), self.len());
        RawDrain {
            iter,
            table: ManuallyDrop::new(mem::replace(self, Self::new())),
            orig_table: NonNull::from(self),
            marker: PhantomData,
        }
    }

    /// Returns an iterator which consumes all elements from the table.
    ///
    /// Iteration starts at the provided iterator's current location.
    ///
    /// It is up to the caller to ensure that the iterator is valid for this
    /// `RawTable` and covers all items that remain in the table.
    pub unsafe fn into_iter_from(self, iter: RawIter<T>) -> RawIntoIter<T> {
        debug_assert_eq!(iter.len(), self.len());

        let alloc = self.into_alloc();
        RawIntoIter {
            iter,
            alloc,
            marker: PhantomData,
        }
    }

    /// Converts the table into a raw allocation. The contents of the table
    /// should be dropped using a `RawIter` before freeing the allocation.
    #[cfg_attr(feature = "inline-more", inline)]
    pub(crate) fn into_alloc(self) -> Option<(NonNull<u8>, Layout)> {
        let alloc = if self.is_empty_singleton() {
            None
        } else {
            // Avoid `Option::unwrap_or_else` because it bloats LLVM IR.
            let (layout, ctrl_offset) = match calculate_layout::<T>(self.buckets()) {
                Some(lco) => lco,
                None => unsafe { hint::unreachable_unchecked() },
            };
            Some((
                unsafe { NonNull::new_unchecked(self.ctrl.as_ptr().sub(ctrl_offset)) },
                layout,
            ))
        };
        mem::forget(self);
        alloc
    }
}

unsafe impl<T> Send for RawTable<T> where T: Send {}
unsafe impl<T> Sync for RawTable<T> where T: Sync {}

impl<T: Clone> Clone for RawTable<T> {
    fn clone(&self) -> Self {
        if self.is_empty_singleton() {
            Self::new()
        } else {
            unsafe {
                let mut new_table = ManuallyDrop::new(
                    // Avoid `Result::ok_or_else` because it bloats LLVM IR.
                    match Self::new_uninitialized(self.buckets(), Fallibility::Infallible) {
                        Ok(table) => table,
                        Err(_) => hint::unreachable_unchecked(),
                    },
                );

                new_table.clone_from_spec(self, |new_table| {
                    // We need to free the memory allocated for the new table.
                    new_table.free_buckets();
                });

                // Return the newly created table.
                ManuallyDrop::into_inner(new_table)
            }
        }
    }

    fn clone_from(&mut self, source: &Self) {
        if source.is_empty_singleton() {
            *self = Self::new();
        } else {
            unsafe {
                // First, drop all our elements without clearing the control bytes.
                if mem::needs_drop::<T>() && self.len() != 0 {
                    for item in self.iter() {
                        item.drop();
                    }
                }

                // If necessary, resize our table to match the source.
                if self.buckets() != source.buckets() {
                    // Skip our drop by using ptr::write.
                    if !self.is_empty_singleton() {
                        self.free_buckets();
                    }
                    (self as *mut Self).write(
                        // Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
                        match Self::new_uninitialized(source.buckets(), Fallibility::Infallible) {
                            Ok(table) => table,
                            Err(_) => hint::unreachable_unchecked(),
                        },
                    );
                }

                self.clone_from_spec(source, |self_| {
                    // We need to leave the table in an empty state.
                    self_.clear_no_drop()
                });
            }
        }
    }
}

/// Specialization of `clone_from` for `Copy` types
trait RawTableClone {
    unsafe fn clone_from_spec(&mut self, source: &Self, on_panic: impl FnMut(&mut Self));
}
impl<T: Clone> RawTableClone for RawTable<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    default_fn! {
        unsafe fn clone_from_spec(&mut self, source: &Self, on_panic: impl FnMut(&mut Self)) {
            self.clone_from_impl(source, on_panic);
        }
    }
}
#[cfg(feature = "nightly")]
impl<T: Copy> RawTableClone for RawTable<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn clone_from_spec(&mut self, source: &Self, _on_panic: impl FnMut(&mut Self)) {
        source
            .ctrl(0)
            .copy_to_nonoverlapping(self.ctrl(0), self.num_ctrl_bytes());
        source
            .data_start()
            .copy_to_nonoverlapping(self.data_start(), self.buckets());

        self.items = source.items;
        self.growth_left = source.growth_left;
    }
}

impl<T: Clone> RawTable<T> {
    /// Common code for clone and clone_from. Assumes `self.buckets() == source.buckets()`.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn clone_from_impl(&mut self, source: &Self, mut on_panic: impl FnMut(&mut Self)) {
        // Copy the control bytes unchanged. We do this in a single pass
        source
            .ctrl(0)
            .copy_to_nonoverlapping(self.ctrl(0), self.num_ctrl_bytes());

        // The cloning of elements may panic, in which case we need
        // to make sure we drop only the elements that have been
        // cloned so far.
        let mut guard = guard((0, &mut *self), |(index, self_)| {
            if mem::needs_drop::<T>() && self_.len() != 0 {
                for i in 0..=*index {
                    if is_full(*self_.ctrl(i)) {
                        self_.bucket(i).drop();
                    }
                }
            }

            // Depending on whether we were called from clone or clone_from, we
            // either need to free the memory for the destination table or just
            // clear the control bytes.
            on_panic(self_);
        });

        for from in source.iter() {
            let index = source.bucket_index(&from);
            let to = guard.1.bucket(index);
            to.write(from.as_ref().clone());

            // Update the index in case we need to unwind.
            guard.0 = index;
        }

        // Successfully cloned all items, no need to clean up.
        mem::forget(guard);

        self.items = source.items;
        self.growth_left = source.growth_left;
    }

    /// Variant of `clone_from` to use when a hasher is available.
    #[cfg(feature = "raw")]
    pub fn clone_from_with_hasher(&mut self, source: &Self, hasher: impl Fn(&T) -> u64) {
        // If we have enough capacity in the table, just clear it and insert
        // elements one by one. We don't do this if we have the same number of
        // buckets as the source since we can just copy the contents directly
        // in that case.
        if self.buckets() != source.buckets()
            && bucket_mask_to_capacity(self.bucket_mask) >= source.len()
        {
            self.clear();

            let guard_self = guard(&mut *self, |self_| {
                // Clear the partially copied table if a panic occurs, otherwise
                // items and growth_left will be out of sync with the contents
                // of the table.
                self_.clear();
            });

            unsafe {
                for item in source.iter() {
                    // This may panic.
                    let item = item.as_ref().clone();
                    let hash = hasher(&item);

                    // We can use a simpler version of insert() here since:
                    // - there are no DELETED entries.
                    // - we know there is enough space in the table.
                    // - all elements are unique.
                    let index = guard_self.find_insert_slot(hash);
                    guard_self.set_ctrl(index, h2(hash));
                    guard_self.bucket(index).write(item);
                }
            }

            // Successfully cloned all items, no need to clean up.
            mem::forget(guard_self);

            self.items = source.items;
            self.growth_left -= source.items;
        } else {
            self.clone_from(source);
        }
    }
}

#[cfg(feature = "nightly")]
unsafe impl<#[may_dangle] T> Drop for RawTable<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        if !self.is_empty_singleton() {
            unsafe {
                if mem::needs_drop::<T>() && self.len() != 0 {
                    for item in self.iter() {
                        item.drop();
                    }
                }
                self.free_buckets();
            }
        }
    }
}
#[cfg(not(feature = "nightly"))]
impl<T> Drop for RawTable<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        if !self.is_empty_singleton() {
            unsafe {
                if mem::needs_drop::<T>() && self.len() != 0 {
                    for item in self.iter() {
                        item.drop();
                    }
                }
                self.free_buckets();
            }
        }
    }
}

impl<T> IntoIterator for RawTable<T> {
    type Item = T;
    type IntoIter = RawIntoIter<T>;

    #[cfg_attr(feature = "inline-more", inline)]
    fn into_iter(self) -> RawIntoIter<T> {
        unsafe {
            let iter = self.iter();
            self.into_iter_from(iter)
        }
    }
}

/// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does
/// not track an item count.
pub(crate) struct RawIterRange<T> {
    // Mask of full buckets in the current group. Bits are cleared from this
    // mask as each element is processed.
    current_group: BitMask,

    // Pointer to the buckets for the current group.
    data: Bucket<T>,

    // Pointer to the next group of control bytes,
    // Must be aligned to the group size.
    next_ctrl: *const u8,

    // Pointer one past the last control byte of this range.
    end: *const u8,
}

impl<T> RawIterRange<T> {
    /// Returns a `RawIterRange` covering a subset of a table.
    ///
    /// The control byte address must be aligned to the group size.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn new(ctrl: *const u8, data: Bucket<T>, len: usize) -> Self {
        debug_assert_ne!(len, 0);
        debug_assert_eq!(ctrl as usize % Group::WIDTH, 0);
        let end = ctrl.add(len);

        // Load the first group and advance ctrl to point to the next group
        let current_group = Group::load_aligned(ctrl).match_full();
        let next_ctrl = ctrl.add(Group::WIDTH);

        Self {
            current_group,
            data,
            next_ctrl,
            end,
        }
    }

    /// Splits a `RawIterRange` into two halves.
    ///
    /// Returns `None` if the remaining range is smaller than or equal to the
    /// group width.
    #[cfg_attr(feature = "inline-more", inline)]
    #[cfg(feature = "rayon")]
    pub(crate) fn split(mut self) -> (Self, Option<RawIterRange<T>>) {
        unsafe {
            if self.end <= self.next_ctrl {
                // Nothing to split if the group that we are current processing
                // is the last one.
                (self, None)
            } else {
                // len is the remaining number of elements after the group that
                // we are currently processing. It must be a multiple of the
                // group size (small tables are caught by the check above).
                let len = offset_from(self.end, self.next_ctrl);
                debug_assert_eq!(len % Group::WIDTH, 0);

                // Split the remaining elements into two halves, but round the
                // midpoint down in case there is an odd number of groups
                // remaining. This ensures that:
                // - The tail is at least 1 group long.
                // - The split is roughly even considering we still have the
                //   current group to process.
                let mid = (len / 2) & !(Group::WIDTH - 1);

                let tail = Self::new(
                    self.next_ctrl.add(mid),
                    self.data.next_n(Group::WIDTH).next_n(mid),
                    len - mid,
                );
                debug_assert_eq!(
                    self.data.next_n(Group::WIDTH).next_n(mid).ptr,
                    tail.data.ptr
                );
                debug_assert_eq!(self.end, tail.end);
                self.end = self.next_ctrl.add(mid);
                debug_assert_eq!(self.end.add(Group::WIDTH), tail.next_ctrl);
                (self, Some(tail))
            }
        }
    }
}

// We make raw iterators unconditionally Send and Sync, and let the PhantomData
// in the actual iterator implementations determine the real Send/Sync bounds.
unsafe impl<T> Send for RawIterRange<T> {}
unsafe impl<T> Sync for RawIterRange<T> {}

impl<T> Clone for RawIterRange<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn clone(&self) -> Self {
        Self {
            data: self.data.clone(),
            next_ctrl: self.next_ctrl,
            current_group: self.current_group,
            end: self.end,
        }
    }
}

impl<T> Iterator for RawIterRange<T> {
    type Item = Bucket<T>;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<Bucket<T>> {
        unsafe {
            loop {
                if let Some(index) = self.current_group.lowest_set_bit() {
                    self.current_group = self.current_group.remove_lowest_bit();
                    return Some(self.data.next_n(index));
                }

                if self.next_ctrl >= self.end {
                    return None;
                }

                // We might read past self.end up to the next group boundary,
                // but this is fine because it only occurs on tables smaller
                // than the group size where the trailing control bytes are all
                // EMPTY. On larger tables self.end is guaranteed to be aligned
                // to the group size (since tables are power-of-two sized).
                self.current_group = Group::load_aligned(self.next_ctrl).match_full();
                self.data = self.data.next_n(Group::WIDTH);
                self.next_ctrl = self.next_ctrl.add(Group::WIDTH);
            }
        }
    }

    #[cfg_attr(feature = "inline-more", inline)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        // We don't have an item count, so just guess based on the range size.
        (
            0,
            Some(unsafe { offset_from(self.end, self.next_ctrl) + Group::WIDTH }),
        )
    }
}

impl<T> FusedIterator for RawIterRange<T> {}

/// Iterator which returns a raw pointer to every full bucket in the table.
///
/// For maximum flexibility this iterator is not bound by a lifetime, but you
/// must observe several rules when using it:
/// - You must not free the hash table while iterating (including via growing/shrinking).
/// - It is fine to erase a bucket that has been yielded by the iterator.
/// - Erasing a bucket that has not yet been yielded by the iterator may still
///   result in the iterator yielding that bucket (unless `reflect_remove` is called).
/// - It is unspecified whether an element inserted after the iterator was
///   created will be yielded by that iterator (unless `reflect_insert` is called).
/// - The order in which the iterator yields bucket is unspecified and may
///   change in the future.
pub struct RawIter<T> {
    pub(crate) iter: RawIterRange<T>,
    items: usize,
}

impl<T> RawIter<T> {
    /// Refresh the iterator so that it reflects a removal from the given bucket.
    ///
    /// For the iterator to remain valid, this method must be called once
    /// for each removed bucket before `next` is called again.
    ///
    /// This method should be called _before_ the removal is made. It is not necessary to call this
    /// method if you are removing an item that this iterator yielded in the past.
    #[cfg(feature = "raw")]
    pub fn reflect_remove(&mut self, b: &Bucket<T>) {
        self.reflect_toggle_full(b, false);
    }

    /// Refresh the iterator so that it reflects an insertion into the given bucket.
    ///
    /// For the iterator to remain valid, this method must be called once
    /// for each insert before `next` is called again.
    ///
    /// This method does not guarantee that an insertion of a bucket witha greater
    /// index than the last one yielded will be reflected in the iterator.
    ///
    /// This method should be called _after_ the given insert is made.
    #[cfg(feature = "raw")]
    pub fn reflect_insert(&mut self, b: &Bucket<T>) {
        self.reflect_toggle_full(b, true);
    }

    /// Refresh the iterator so that it reflects a change to the state of the given bucket.
    #[cfg(feature = "raw")]
    fn reflect_toggle_full(&mut self, b: &Bucket<T>, is_insert: bool) {
        unsafe {
            if b.as_ptr() > self.iter.data.as_ptr() {
                // The iterator has already passed the bucket's group.
                // So the toggle isn't relevant to this iterator.
                return;
            }

            if self.iter.next_ctrl < self.iter.end
                && b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr()
            {
                // The iterator has not yet reached the bucket's group.
                // We don't need to reload anything, but we do need to adjust the item count.

                if cfg!(debug_assertions) {
                    // Double-check that the user isn't lying to us by checking the bucket state.
                    // To do that, we need to find its control byte. We know that self.iter.data is
                    // at self.iter.next_ctrl - Group::WIDTH, so we work from there:
                    let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr());
                    let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset);
                    // This method should be called _before_ a removal, or _after_ an insert,
                    // so in both cases the ctrl byte should indicate that the bucket is full.
                    assert!(is_full(*ctrl));
                }

                if is_insert {
                    self.items += 1;
                } else {
                    self.items -= 1;
                }

                return;
            }

            // The iterator is at the bucket group that the toggled bucket is in.
            // We need to do two things:
            //
            //  - Determine if the iterator already yielded the toggled bucket.
            //    If it did, we're done.
            //  - Otherwise, update the iterator cached group so that it won't
            //    yield a to-be-removed bucket, or _will_ yield a to-be-added bucket.
            //    We'll also need ot update the item count accordingly.
            if let Some(index) = self.iter.current_group.lowest_set_bit() {
                let next_bucket = self.iter.data.next_n(index);
                if b.as_ptr() > next_bucket.as_ptr() {
                    // The toggled bucket is "before" the bucket the iterator would yield next. We
                    // therefore don't need to do anything --- the iterator has already passed the
                    // bucket in question.
                    //
                    // The item count must already be correct, since a removal or insert "prior" to
                    // the iterator's position wouldn't affect the item count.
                } else {
                    // The removed bucket is an upcoming bucket. We need to make sure it does _not_
                    // get yielded, and also that it's no longer included in the item count.
                    //
                    // NOTE: We can't just reload the group here, both since that might reflect
                    // inserts we've already passed, and because that might inadvertently unset the
                    // bits for _other_ removals. If we do that, we'd have to also decrement the
                    // item count for those other bits that we unset. But the presumably subsequent
                    // call to reflect for those buckets might _also_ decrement the item count.
                    // Instead, we _just_ flip the bit for the particular bucket the caller asked
                    // us to reflect.
                    let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr());
                    let was_full = self.iter.current_group.flip(our_bit);
                    debug_assert_ne!(was_full, is_insert);

                    if is_insert {
                        self.items += 1;
                    } else {
                        self.items -= 1;
                    }

                    if cfg!(debug_assertions) {
                        if b.as_ptr() == next_bucket.as_ptr() {
                            // The removed bucket should no longer be next
                            debug_assert_ne!(self.iter.current_group.lowest_set_bit(), Some(index));
                        } else {
                            // We should not have changed what bucket comes next.
                            debug_assert_eq!(self.iter.current_group.lowest_set_bit(), Some(index));
                        }
                    }
                }
            } else {
                // We must have already iterated past the removed item.
            }
        }
    }
}

impl<T> Clone for RawIter<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn clone(&self) -> Self {
        Self {
            iter: self.iter.clone(),
            items: self.items,
        }
    }
}

impl<T> Iterator for RawIter<T> {
    type Item = Bucket<T>;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<Bucket<T>> {
        if let Some(b) = self.iter.next() {
            self.items -= 1;
            Some(b)
        } else {
            // We don't check against items == 0 here to allow the
            // compiler to optimize away the item count entirely if the
            // iterator length is never queried.
            debug_assert_eq!(self.items, 0);
            None
        }
    }

    #[cfg_attr(feature = "inline-more", inline)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.items, Some(self.items))
    }
}

impl<T> ExactSizeIterator for RawIter<T> {}
impl<T> FusedIterator for RawIter<T> {}

/// Iterator which consumes a table and returns elements.
pub struct RawIntoIter<T> {
    iter: RawIter<T>,
    alloc: Option<(NonNull<u8>, Layout)>,
    marker: PhantomData<T>,
}

impl<T> RawIntoIter<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn iter(&self) -> RawIter<T> {
        self.iter.clone()
    }
}

unsafe impl<T> Send for RawIntoIter<T> where T: Send {}
unsafe impl<T> Sync for RawIntoIter<T> where T: Sync {}

#[cfg(feature = "nightly")]
unsafe impl<#[may_dangle] T> Drop for RawIntoIter<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements
            if mem::needs_drop::<T>() && self.iter.len() != 0 {
                while let Some(item) = self.iter.next() {
                    item.drop();
                }
            }

            // Free the table
            if let Some((ptr, layout)) = self.alloc {
                dealloc(ptr.as_ptr(), layout);
            }
        }
    }
}
#[cfg(not(feature = "nightly"))]
impl<T> Drop for RawIntoIter<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements
            if mem::needs_drop::<T>() && self.iter.len() != 0 {
                while let Some(item) = self.iter.next() {
                    item.drop();
                }
            }

            // Free the table
            if let Some((ptr, layout)) = self.alloc {
                dealloc(ptr.as_ptr(), layout);
            }
        }
    }
}

impl<T> Iterator for RawIntoIter<T> {
    type Item = T;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<T> {
        unsafe { Some(self.iter.next()?.read()) }
    }

    #[cfg_attr(feature = "inline-more", inline)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T> ExactSizeIterator for RawIntoIter<T> {}
impl<T> FusedIterator for RawIntoIter<T> {}

/// Iterator which consumes elements without freeing the table storage.
pub struct RawDrain<'a, T> {
    iter: RawIter<T>,

    // The table is moved into the iterator for the duration of the drain. This
    // ensures that an empty table is left if the drain iterator is leaked
    // without dropping.
    table: ManuallyDrop<RawTable<T>>,
    orig_table: NonNull<RawTable<T>>,

    // We don't use a &'a mut RawTable<T> because we want RawDrain to be
    // covariant over T.
    marker: PhantomData<&'a RawTable<T>>,
}

impl<T> RawDrain<'_, T> {
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn iter(&self) -> RawIter<T> {
        self.iter.clone()
    }
}

unsafe impl<T> Send for RawDrain<'_, T> where T: Send {}
unsafe impl<T> Sync for RawDrain<'_, T> where T: Sync {}

impl<T> Drop for RawDrain<'_, T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements. Note that this may panic.
            if mem::needs_drop::<T>() && self.iter.len() != 0 {
                while let Some(item) = self.iter.next() {
                    item.drop();
                }
            }

            // Reset the contents of the table now that all elements have been
            // dropped.
            self.table.clear_no_drop();

            // Move the now empty table back to its original location.
            self.orig_table
                .as_ptr()
                .copy_from_nonoverlapping(&*self.table, 1);
        }
    }
}

impl<T> Iterator for RawDrain<'_, T> {
    type Item = T;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<T> {
        unsafe {
            let item = self.iter.next()?;
            Some(item.read())
        }
    }

    #[cfg_attr(feature = "inline-more", inline)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T> ExactSizeIterator for RawDrain<'_, T> {}
impl<T> FusedIterator for RawDrain<'_, T> {}

/// Iterator over occupied buckets that could match a given hash.
///
/// In rare cases, the iterator may return a bucket with a different hash.
pub struct RawIterHash<'a, T> {
    table: &'a RawTable<T>,

    // The top 7 bits of the hash.
    h2_hash: u8,

    // The sequence of groups to probe in the search.
    probe_seq: ProbeSeq,

    // The current group and its position.
    pos: usize,
    group: Group,

    // The elements within the group with a matching h2-hash.
    bitmask: BitMaskIter,
}

impl<'a, T> RawIterHash<'a, T> {
    fn new(table: &'a RawTable<T>, hash: u64) -> Self {
        unsafe {
            let h2_hash = h2(hash);
            let mut probe_seq = table.probe_seq(hash);
            let pos = probe_seq.next().unwrap();
            let group = Group::load(table.ctrl(pos));
            let bitmask = group.match_byte(h2_hash).into_iter();

            RawIterHash {
                table,
                h2_hash,
                probe_seq,
                pos,
                group,
                bitmask,
            }
        }
    }
}

impl<'a, T> Iterator for RawIterHash<'a, T> {
    type Item = Bucket<T>;

    fn next(&mut self) -> Option<Bucket<T>> {
        unsafe {
            loop {
                if let Some(bit) = self.bitmask.next() {
                    let index = (self.pos + bit) & self.table.bucket_mask;
                    let bucket = self.table.bucket(index);
                    return Some(bucket);
                }
                if likely(self.group.match_empty().any_bit_set()) {
                    return None;
                }
                self.pos = self.probe_seq.next().unwrap();
                self.group = Group::load(self.table.ctrl(self.pos));
                self.bitmask = self.group.match_byte(self.h2_hash).into_iter();
            }
        }
    }
}