1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
//! This library provides [`HashMap`] and [`HashSet`] replacements that implement the [`Hash`]
//! trait -- [`HashableHashMap`] and [`HashableHashSet`].
//!
//! # Example
//!
//! The following is rejected by the compiler:
//!
//! ```rust compile_fail
//! let mut inner_set = std::collections::HashSet::new();
//! inner_set.insert("inner value");
//!
//! let mut outer_set = std::collections::HashSet::new();
//! outer_set.insert(inner_set);
//! ```
//!
//! ```text
//! error[E0277]: the trait bound `HashSet<&str>: Hash` is not satisfied
//! ```
//!
//! The error can be resolved by swapping the inner [`HashSet`] with [`HashableHashSet`]:
//!
//! ```rust
//! let mut inner_set = hashable::HashableHashSet::new();
//! inner_set.insert("inner value");
//!
//! let mut outer_set = std::collections::HashSet::new();
//! outer_set.insert(inner_set);
//! ```

use std::cell::RefCell;
use std::collections::{HashMap, HashSet};
use std::fmt::{self, Debug, Formatter};
use std::hash::{Hash, Hasher, BuildHasher};
use std::ops::{Deref, DerefMut};
use std::iter::FromIterator;

// Reuse a buffer to avoid temporary allocations.
thread_local!(static BUFFER: RefCell<Vec<u64>> = RefCell::new(Vec::with_capacity(100)));

/// A [`HashSet`] wrapper that implements [`Hash`] by sorting pre-hashed entries and feeding those back
/// into the passed-in [`Hasher`].
#[derive(Clone)]
pub struct HashableHashSet<V, S = ahash::RandomState>(HashSet<V, S>);

#[cfg(test)]
fn hash<T: Hash>(value: &T) -> u64 {
    let mut hasher = ahash::AHasher::default();
    value.hash(&mut hasher);
    hasher.finish()
}

impl<V> HashableHashSet<V> {
    #[inline]
    pub fn new() -> HashableHashSet<V> {
        Default::default()
    }
}

impl<V, S> HashableHashSet<V, S> {
    #[inline]
    pub fn with_hasher(hasher: S) -> Self {
        HashableHashSet(HashSet::with_hasher(hasher))
    }
}

impl<V: Debug, S> Debug for HashableHashSet<V, S> {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        self.0.fmt(f) // transparent
    }
}

impl<V, S: Default> Default for HashableHashSet<V, S> {
    #[inline]
    fn default() -> HashableHashSet<V, S> {
        HashableHashSet::with_hasher(S::default())
    }
}

impl<V, S> Deref for HashableHashSet<V, S> {
    type Target = HashSet<V, S>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<V, S> DerefMut for HashableHashSet<V, S> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl<V: Hash + Eq, S: BuildHasher> Eq for HashableHashSet<V, S> {}

impl<V: Eq + Hash, S: BuildHasher + Default> FromIterator<V> for HashableHashSet<V, S> {
    fn from_iter<T: IntoIterator<Item=V>>(iter: T) -> Self {
        HashableHashSet(HashSet::from_iter(iter))
    }
}

impl<V: Hash, S> Hash for HashableHashSet<V, S> {
    fn hash<H: Hasher>(&self, hasher: &mut H) {
        BUFFER.with(|buffer| {
            // The cached buffer might already be in use farther up the call stack, so the
            // algorithm reverts to a fallback as needed.
            let fallback = RefCell::new(Vec::new());

            let mut buffer = buffer.try_borrow_mut()
                .unwrap_or_else(|_| fallback.borrow_mut());
            buffer.clear();
            buffer.extend(self.0.iter().map(|v| {
                let mut inner_hasher = ahash::AHasher::default();
                v.hash(&mut inner_hasher);
                inner_hasher.finish()
            }));
            buffer.sort_unstable();
            for v in &*buffer {
                hasher.write_u64(*v);
            }
        });
    }
}

impl<'a, V, S> IntoIterator for &'a HashableHashSet<V, S> {
    type Item = &'a V;
    type IntoIter = std::collections::hash_set::Iter<'a, V>;

    #[inline]
    fn into_iter(self) -> std::collections::hash_set::Iter<'a, V> {
        self.0.iter()
    }
}

impl<V: Hash + Eq, S: BuildHasher> PartialEq for HashableHashSet<V, S> {
    fn eq(&self, other: &Self) -> bool {
        self.0.eq(&other.0)
    }
}

impl<V, S> serde::Serialize for HashableHashSet<V, S>
where V: Eq + Hash + serde::Serialize,
      S: BuildHasher,
{
    fn serialize<Ser: serde::Serializer>(&self, ser: Ser) -> Result<Ser::Ok, Ser::Error> {
        self.0.serialize(ser)
    }
}

#[cfg(test)]
mod hashable_hash_set_test {
    use crate::hash;
    use super::HashableHashSet;

    #[test]
    fn different_hash_if_items_differ() {
        let mut set = HashableHashSet::new();
        set.insert("one");
        set.insert("two");
        set.insert("three");
        let fp1 = hash(&set);

        let mut set = HashableHashSet::new();
        set.insert("four");
        set.insert("five");
        set.insert("six");
        let fp2 = hash(&set);

        assert_ne!(fp1, fp2);
    }

    #[test]
    fn insertion_order_is_irrelevant() {
        let mut set = HashableHashSet::new();
        set.insert("one");
        set.insert("two");
        set.insert("three");
        let fp1 = hash(&set);

        let mut set = HashableHashSet::new();
        set.insert("three");
        set.insert("one");
        set.insert("two");
        let fp2 = hash(&set);

        assert_eq!(fp1, fp2);
    }

    #[test]
    fn can_hash_set_of_sets() {
        // This is a regression test for a case that used to cause `hash` to panic.
        let mut set = HashableHashSet::new();
        set.insert({
            let mut set = HashableHashSet::new();
            set.insert("value");
            set
        });
        hash(&set); // No assertion as this test is just checking for a panic.
    }
}

/// A [`HashMap`] wrapper that implements [`Hash`] by sorting pre-hashed entries and feeding those back
/// into the passed-in [`Hasher`].
#[derive(Clone)]
pub struct HashableHashMap<K, V, S = ahash::RandomState>(HashMap<K, V, S>);

impl<K, V> HashableHashMap<K, V> {
    #[inline]
    pub fn new() -> HashableHashMap<K, V, ahash::RandomState> {
        Default::default()
    }
}

impl<K, V, S> HashableHashMap<K, V, S> {
    #[inline]
    pub fn with_hasher(hasher: S) -> Self {
        HashableHashMap(HashMap::with_hasher(hasher))
    }
}

impl<K: Debug, V: Debug, S> Debug for HashableHashMap<K, V, S> {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        self.0.fmt(f) // transparent
    }
}

impl<K, V, S: Default> Default for HashableHashMap<K, V, S> {
    #[inline]
    fn default() -> Self {
        HashableHashMap::with_hasher(S::default())
    }
}


impl<K, V, S> Deref for HashableHashMap<K, V, S> {
    type Target = HashMap<K, V, S>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<K, V, S> DerefMut for HashableHashMap<K, V, S> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl<K: Eq + Hash, V: Eq, S: BuildHasher> Eq for HashableHashMap<K, V, S> {}

impl<K: Eq + Hash, V, S: BuildHasher + Default> FromIterator<(K, V)> for HashableHashMap<K, V, S> {
    fn from_iter<T: IntoIterator<Item=(K, V)>>(iter: T) -> Self {
        HashableHashMap(HashMap::from_iter(iter))
    }
}

impl<K: Hash, V: Hash, S> Hash for HashableHashMap<K, V, S> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        BUFFER.with(|buffer| {
            // The cached buffer might already be in use farther up the call stack, so the
            // algorithm reverts to a fallback as needed.
            let fallback = RefCell::new(Vec::new());

            let mut buffer = buffer.try_borrow_mut()
                .unwrap_or_else(|_| fallback.borrow_mut());
            buffer.clear();
            buffer.extend(self.0.iter().map(|(k, v)| {
                let mut inner_hasher = ahash::AHasher::default();
                k.hash(&mut inner_hasher);
                v.hash(&mut inner_hasher);
                inner_hasher.finish()
            }));
            buffer.sort_unstable();
            for hash in &*buffer {
                state.write_u64(*hash);
            }
        });
    }
}

impl<'a, K, V, S> IntoIterator for &'a HashableHashMap<K, V, S> {
    type Item = (&'a K, &'a V);
    type IntoIter = std::collections::hash_map::Iter<'a, K, V>;

    #[inline]
    fn into_iter(self) -> std::collections::hash_map::Iter<'a, K, V> {
        self.0.iter()
    }
}

impl<K: Hash + Eq, V: PartialEq, S: BuildHasher> PartialEq for HashableHashMap<K, V, S> {
    fn eq(&self, other: &Self) -> bool {
        self.0.eq(&other.0)
    }
}

impl<K, V, S> serde::Serialize for HashableHashMap<K, V, S>
where K: Eq + Hash + serde::Serialize,
      V: serde::Serialize,
      S: BuildHasher,
{
    fn serialize<Ser: serde::Serializer>(&self, ser: Ser) -> Result<Ser::Ok, Ser::Error> {
        self.0.serialize(ser)
    }
}

#[cfg(test)]
mod hashable_hash_map_test {
    use crate::hash;
    use super::HashableHashMap;

    #[test]
    fn different_hash_if_items_differ() {
        let mut map = HashableHashMap::new();
        map.insert("one", 1);
        map.insert("two", 2);
        map.insert("three", 3);
        let fp1 = hash(&map);

        // Same keys as the first map (different values).
        let mut map = HashableHashMap::new();
        map.insert("one", 4);
        map.insert("two", 5);
        map.insert("three", 6);
        let fp2 = hash(&map);

        // Same values as the first map (different keys).
        let mut map = HashableHashMap::new();
        map.insert("four", 1);
        map.insert("five", 2);
        map.insert("six", 3);
        let fp3 = hash(&map);

        assert_ne!(fp1, fp2);
        assert_ne!(fp1, fp3);
        assert_ne!(fp2, fp3);
    }

    #[test]
    fn insertion_order_is_irrelevant() {
        let mut map = HashableHashMap::new();
        map.insert("one", 1);
        map.insert("two", 2);
        map.insert("three", 3);
        let fp1 = hash(&map);

        let mut map = HashableHashMap::new();
        map.insert("three", 3);
        map.insert("one", 1);
        map.insert("two", 2);
        let fp2 = hash(&map);

        assert_eq!(fp1, fp2);
    }

    #[test]
    fn can_hash_map_of_maps() {
        // This is a regression test for a case that used to cause `hash` to panic.
        let mut map = HashableHashMap::new();
        map.insert({
            let mut map = HashableHashMap::new();
            map.insert("key", "value");
            map
        }, "value");
        hash(&map); // No assertion as this test is just checking for a panic.
    }
}