1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
use crate::raw::{Pointer, Reclaim};
use crate::record::HazPtrRecord;
use crate::sync::atomic::{AtomicIsize, AtomicPtr, AtomicUsize};
use alloc::boxed::Box;
use alloc::collections::BTreeSet;
use core::marker::PhantomData;
use core::sync::atomic::Ordering;

#[cfg(doc)]
use crate::*;

// Like folly's implementation, we use a time a based check to run reclamation about every
// `SYNC_TIME_PERIOD` nanoseconds. The next time we should run reclamation is stored in
// `due_time` inside `Domain`. On `no_std` we don't (yet) have access to time so this feature is
// disabled. Also on platforms with < 64 bits, we can only store 2^32 nanoseconds -> ~4 seconds or
// less, so this feature is also disabled. Additionally, loom can't support time for reasons of
// determinism.

#[cfg(all(feature = "std", target_pointer_width = "64", not(loom)))]
const SYNC_TIME_PERIOD: u64 = std::time::Duration::from_nanos(2000000000).as_nanos() as u64;
#[cfg(all(feature = "std", target_pointer_width = "64", not(loom)))]
use crate::sync::atomic::AtomicU64;

#[cfg(loom)]
const RCOUNT_THRESHOLD: isize = 5;
#[cfg(not(loom))]
const RCOUNT_THRESHOLD: isize = 1000;
const HCOUNT_MULTIPLIER: isize = 2;
#[cfg(loom)]
const NUM_SHARDS: usize = 2;
#[cfg(not(loom))]
const NUM_SHARDS: usize = 8;
const IGNORED_LOW_BITS: u8 = 8;
const SHARD_MASK: usize = NUM_SHARDS - 1;
const LOCK_BIT: usize = 1;

/// The singleton [domain family](Domain) for the global domain.
///
/// The global domain is a convenient way to amortize the overhead of memory reclamation across
/// an entire program. Rather than being tied to any given [`Domain`] instance, all users of the
/// global domain share a responsibility to reclaim retired objects, and are able to re-use each
/// others' hazard pointers.
///
/// You can get a handle to the single global domain using [`Domain::global`].
#[non_exhaustive]
pub struct Global;
impl Global {
    const fn new() -> Self {
        Global
    }
}

/// Marks a [domain family](Domain) that uniquely characterizes a [domain instance](Domain).
///
/// See [`Global`] and [`unique_domain`] for examples of families that safely manage this.
///
/// # Safety
///
/// Implementors of this trait must guarantee only one Domain of the implementing family can ever be constructed.
pub unsafe trait Singleton {}

// Safety: we can guarantee that there's only ever one Domain<Global> because Global itself is not
// possible to construct outside of this crate (due to #[non_exhaustive] + no public constructor),
// and we only ever construct one Domain from it internally in the form of a single static.
unsafe impl Singleton for Global {}

#[cfg(not(loom))]
static SHARED_DOMAIN: Domain<Global> = Domain::new(&Global::new());

#[cfg(loom)]
loom::lazy_static! {
    static ref SHARED_DOMAIN: Domain<Global> = Domain::new(&Global::new());
    static ref SHARD: loom::sync::atomic::AtomicUsize = loom::sync::atomic::AtomicUsize::new(0);
}

// Make AtomicPtr usable with loom API.
trait WithMut<T> {
    fn with_mut<R>(&mut self, f: impl FnOnce(&mut *mut T) -> R) -> R;
}
impl<T> WithMut<T> for core::sync::atomic::AtomicPtr<T> {
    fn with_mut<R>(&mut self, f: impl FnOnce(&mut *mut T) -> R) -> R {
        f(self.get_mut())
    }
}

/// Synchronization point between hazard pointers and the writers they guard against.
///
/// Every [hazard pointer](HazardPointer) is associated with a domain, and can only guard
/// against reclamation of objects that are retired through that same domain. In other words, you
/// should always ensure that your code uses the same domain to retire objects as it uses to make
/// hazard pointers to read those objects. If it does not, the hazard pointers will provide no
/// meaningful protection. This connection is part of the safety contract for
/// [`HazardPointer::protect`].
///
/// ## Domain families
///
/// To help aid in determining that the same domain is used for loads and stores, every domain has
/// an associated _domain family_ (`F`). The family serves no purpose beyond adding a statically
/// checked guide so that obviously-incompatible domains aren't used. To take advantage of it, your
/// code should define a new zero-sized type that you use every `F` appears, like so:
///
/// ```rust
/// #[non_exhaustive]
/// struct Family;
///
/// type Domain = haphazard::Domain<Family>;
/// type HazardPointer<'domain> = haphazard::HazardPointer<'domain, Family>;
/// type AtomicPtr<T> = haphazard::AtomicPtr<T, Family>;
/// ```
///
/// This ensures at compile-time that you don't, for example, use a [`HazardPointer`] from the
/// [global domain](Global) to guard loads from an [`AtomicPtr`](crate::AtomicPtr) that is tied to
/// a custom domain.
///
/// This isn't bullet-proof though! Nothing prevents you from using hazard pointers allocated from
/// one instance of `Domain<Family>` with an atomic pointer whose writers use a different
/// _instance_ of `Domain<Family>`. So be careful!
///
/// The [`unique_domain`] macro provides a mechanism for constructing a domain with a unique
/// domain family that cannot be confused with any other. If you can use it, you should do so, as
/// it gives stronger static guarantees. However, it has the downside that you cannot name the
/// return type (at least without [impl Trait in type
/// aliases](https://github.com/rust-lang/rust/issues/63063)), which makes it difficult to store in
/// other types.
///
/// In some cases, [`static_unique_domain`] can provide a convenient alternative. This macro makes
/// it possible to declare a static domain with a namable family. This makes it possible to create
/// additional static domains. Domains declared with this macro are always held by a static
/// variable, which limits their usefulness somewhat, but it can allow more ergonomic use since
/// [`HazardPointer`]s and [`AtomicPtr`]s in this domain can be stored in structs. See the
/// documentation for [`static_unique_domain`] for an example.
///
/// ## Reclamation
///
/// Domains are the coordination mechanism used for reclamation. When an object is retired into a
/// domain, the retiring thread will (sometimes) scan the domain for objects that are now safe to
/// reclaim (i.e., drop). Objects that cannot yet be reclaimed because there are active readers are
/// left in the domain for a later retire to check again. This means that there is generally a
/// delay between when an object is retired (i.e., marked as deleted) and when it is actually
/// reclaimed (i.e., [`drop`](core::mem::drop) is called). And if there are no more retires, the
/// objects may not be reclaimed until the owning domain is itself dropped.
///
/// When using the [global domain](Global) (or a [`static_unique_domain`]) to guard data access in
/// your data structure, keep in mind that there is no guarantee that retired objects will be
/// cleaned up by the time your data structure is dropped. As a result, you may need to require
/// that the data you store in said data structure be `'static`. If you wish to avoid that bound,
/// you'll need to construct your own `Domain` for each instance of your data structure so that all
/// the guarded data is reclaimed when your data structure is dropped.
pub struct Domain<F> {
    hazptrs: HazPtrRecords,
    untagged: [RetiredList; NUM_SHARDS],
    family: PhantomData<F>,
    #[cfg(all(feature = "std", target_pointer_width = "64", not(loom)))]
    due_time: AtomicU64,
    nbulk_reclaims: AtomicUsize,
    count: AtomicIsize,
    shutdown: bool,
}

#[cfg(miri)]
extern "Rust" {
    fn miri_static_root(ptr: *const u8);
}

impl Domain<Global> {
    /// Get a handle to the singleton [global domain](Global).
    pub fn global() -> &'static Self {
        #[cfg(miri)]
        unsafe {
            miri_static_root(&SHARED_DOMAIN as *const _ as *const u8);
        };

        &SHARED_DOMAIN
    }
}

/// Generate a [`Domain`] with an entirely unique domain family.
///
/// The generated family implements [`Singleton`], which enables the use of
/// [`AtomicPtr::safe_load`](crate::AtomicPtr::safe_load).
///
/// # Single-call restriction
///
/// The code generated by the `unique_domain!` macro can only be called once, since it would
/// violate the requirements of the [`Singleton`] trait. This means that the `unique_domain!`
/// macro can't be called from inside a data structure's constructor, or in a few other situations.
///
/// ```rust,should_panic
/// use haphazard::{Domain, Singleton, unique_domain};
/// struct DataStructure<F> {
///     domain: Domain<F>,
/// }
/// impl DataStructure<()> {
///     fn new() -> DataStructure<impl Singleton> {
///         DataStructure { domain: unique_domain!() }
///     }
/// }
///
/// fn main() {
///     let ds_1 = DataStructure::new();
///     let ds_2 = DataStructure::new(); // Panics since the code generated by the `unique_domain!`
///                                      // macro was executed more than once.
/// }
/// ```
///
/// The `unique_domain!` macro will panic when the generated code is called a second time. This
/// includes any situation where a function containing a `unique_domain!` is called more than once,
/// or a loop containing a `unique_domain!` executes more than one iteration.
///
/// Since a constructor containing `unique_domain!` cannot be called more than once, data structure
/// authors should not use this macro. Rather, data structure authors should consider one the
/// following options:
///
/// 1. [`static_unique_domain!`](static_unique_domain), which creates a single shared domain for
///    all instances of a data structure.
/// 2. Passing a `Domain<impl Singleton>` in as a parameter to the constructor, (and likely
///    providing a default to use [`Global`]). Authors who choose this options should also consider
///    re-exporting `unique_domain!` for their consumers.
/// 3. Using a non-singleton domain. This option requires unsafe code, but is currently the only
///    'safe' way to automatically create a seperate domain for each instance of a data structure.
///
/// # Notes
///
/// The behaviour of `unique_domain!` in the case that it is called more than once may not be
/// stable.
#[macro_export]
macro_rules! unique_domain {
    () => {{
        fn create_domain() -> Domain<impl Singleton> {
            use ::core::sync::atomic::{AtomicBool, Ordering};
            struct UniqueFamily;
            // Safety: nowhere else can construct an instance of UniqueFamily to pass to
            // Domain::new, and we protect the construction by the `USED` boolean.
            unsafe impl Singleton for UniqueFamily {}
            static USED: AtomicBool = AtomicBool::new(false);
            if USED.compare_exchange(false, true, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
                Domain::new(&UniqueFamily)
            } else {
                panic!("`unique_domain!` macro cannot be executed more than once to maintain the `Singleton` constraints.")
            }
        }
        create_domain()
    }};
}

/// Generate a static [`Domain`] with an entirely unique domain family.
///
/// Usage: `static_unique_domain!(static DOMAIN: Domain<Family>);`
///
/// This macro is useful when you want to store a domain in a static variable, and makes it
/// possible to name the Domain. The generated family implements [`Singleton`], which enables
/// the use of [`AtomicPtr::safe_load`](crate::AtomicPtr::safe_load). This means it's impossible to
/// construct an instance of Family outside of this macro, despite the ability to name the Family
/// Type.
///
/// This is useful since it allows you to store the [`HazardPointer`]s aquired from this domain, since
/// the Family type can now be named.
///
/// ```rust
/// # struct DataStructure;
/// # use haphazard::{HazardPointer, AtomicPtr, static_unique_domain};
/// static_unique_domain!(static LOCAL: Domain<Local>);
///
/// struct ContainsHazardPointers<'domain> {
///     haz_ptr: HazardPointer<'domain, Local>,
///     val: AtomicPtr<DataStructure, Local>,
/// }
///
/// impl ContainsHazardPointers<'_> {
///     fn read(&mut self) -> Option<&DataStructure> {
///         self.val.safe_load(&mut self.haz_ptr)
///     }
/// }
/// # fn main() {}
/// ```
///
/// # Notes
///
/// This macro cannot be used in a function scope or impl block. This macro (at least currently)
/// requires the ability to define a module, and therefore must be placed in module scope. This
/// may be relaxed in the future, but hopefully shouldn't be exteneded.
///
/// This also restricts the ability to define a struct or module with the same name as the static
/// variable, or the family.
#[macro_export]
macro_rules! static_unique_domain {
    ($v:vis static $domain:ident: Domain<$family:ident>) => {
        #[allow(non_snake_case)]
        mod $domain {
            pub struct $family {
                _inner: (),
            }
            // Safety: $family can only be constructed by this module, since it contains private
            // members.
            unsafe impl $crate::Singleton for $family {}
            pub static $domain: $crate::Domain<$family> = $crate::Domain::new(&$family {
                _inner: (),
            });
        }
        $v use $domain::$family;
        $v use $domain::$domain;
    };
}

/// ```rust,compile_fail
/// # struct DataStructure;
/// # use haphazard::{HazardPointer, AtomicPtr, static_unique_domain};
/// static_unique_domain!(static LOCAL: Domain<Local>);
/// static BROKEN: Domain<Local> = Domain::new(&Local {
///     _inner: LOCAL::UniqueFamily,
/// });
/// # fn main() {}
/// ```
#[doc(hidden)]
pub fn static_unique_domain_inner_type_is_unnamable() {}

/// ```rust
/// # struct DataStructure;
/// # use haphazard::{HazardPointer, AtomicPtr, static_unique_domain};
/// static_unique_domain!(static LOCAL: Domain<Local>);
/// static_unique_domain!(static LOCAL2: Domain<Local2>);
/// fn main() {
///     let x: AtomicPtr<_, Local> = AtomicPtr::from(Box::new(42));
///     let y: AtomicPtr<_, Local2> = AtomicPtr::from(Box::new(42));
///
///     let mut hp_x = HazardPointer::new_in_domain(&LOCAL);
///     let mut hp_y = HazardPointer::new_in_domain(&LOCAL2);
///
///     x.safe_load(&mut hp_x);
/// }
/// ```
/// ```rust,compile_fail
/// # struct DataStructure;
/// # use haphazard::{HazardPointer, AtomicPtr, static_unique_domain};
/// static_unique_domain!(static LOCAL: Domain<Local>);
/// static_unique_domain!(static LOCAL2: Domain<Local2>);
/// fn main() {
///     let x: AtomicPtr<_, Local> = AtomicPtr::from(Box::new(42));
///     let y: AtomicPtr<_, Local2> = AtomicPtr::from(Box::new(42));
///
///     let mut hp_x = HazardPointer::new_in_domain(&LOCAL);
///     let mut hp_y = HazardPointer::new_in_domain(&LOCAL2);
///
///     x.safe_load(&mut hp_y);
/// }
/// ```
#[doc(hidden)]
pub fn static_unique_domain_cannot_retire_pointer_in_different_domain() {}

// Macro to make new const only when not in loom.
macro_rules! new {
    ($($decl:tt)*) => {
        /// Construct a new domain with the given family type.
        ///
        /// The type checker protects you from accidentally using a `HazardPointer` from one domain
        /// _family_ (the type `F`) with an object protected by a domain in a different family.
        /// However, it does _not_ protect you from mixing up domains with the same family type.
        /// Therefore, prefer creating domains with [`unique_domain`] or [`static_unique_domain`] where
        /// possible, since they guarantee a unique `F` for every domain.
        ///
        /// See the [`Domain`] documentation for more details.
        pub $($decl)*(_: &'_ F) -> Self {
            // https://blog.rust-lang.org/2021/02/11/Rust-1.50.0.html#const-value-repetition-for-arrays
            #[cfg(not(loom))]
            let untagged = {
                // https://github.com/rust-lang/rust-clippy/issues/7665
                #[allow(clippy::declare_interior_mutable_const)]
                const RETIRED_LIST: RetiredList = RetiredList::new();
                [RETIRED_LIST; NUM_SHARDS]
            };
            #[cfg(loom)]
            let untagged = {
                [(); NUM_SHARDS].map(|_| RetiredList::new())
            };
            Self {
                hazptrs: HazPtrRecords {
                    head: AtomicPtr::new(core::ptr::null_mut()),
                    head_available: AtomicPtr::new(core::ptr::null_mut()),
                    count: AtomicIsize::new(0),
                },
                untagged,
                count: AtomicIsize::new(0),
                #[cfg(all(feature = "std", target_pointer_width = "64", not(loom)))]
                due_time: AtomicU64::new(0),
                nbulk_reclaims: AtomicUsize::new(0),
                family: PhantomData,
                shutdown: false,
            }
        }
    };
}

impl<F> Domain<F> {
    #[cfg(not(loom))]
    new!(const fn new);
    #[cfg(loom)]
    new!(fn new);

    pub(crate) fn acquire(&self) -> &HazPtrRecord {
        self.acquire_many::<1>()[0]
    }

    pub(crate) fn acquire_many<const N: usize>(&self) -> [&HazPtrRecord; N] {
        debug_assert!(N >= 1);

        let (mut head, n) = self.try_acquire_available::<N>();
        assert!(n <= N);

        let mut tail = core::ptr::null();
        [(); N].map(|_| {
            if !head.is_null() {
                tail = head;
                // Safety: HazPtrRecords are never deallocated.
                let rec = unsafe { &*head };
                head = rec.available_next.load(Ordering::Relaxed);
                rec
            } else {
                let rec = self.acquire_new();
                // Make sure we also link in the newly allocated nodes.
                if !tail.is_null() {
                    unsafe { &*tail }
                        .available_next
                        .store(rec as *const _ as *mut _, Ordering::Relaxed);
                }
                tail = rec as *const _;
                rec
            }
        })
    }

    pub(crate) fn release(&self, rec: &HazPtrRecord) {
        assert!(rec.available_next.load(Ordering::Relaxed).is_null());
        self.push_available(rec, rec);
    }

    pub(crate) fn release_many<const N: usize>(&self, recs: [&HazPtrRecord; N]) {
        let head = recs[0];
        let tail = recs.last().expect("we only give out with N > 0");
        assert!(tail.available_next.load(Ordering::Relaxed).is_null());
        self.push_available(head, tail);
    }

    fn try_acquire_available<const N: usize>(&self) -> (*const HazPtrRecord, usize) {
        debug_assert!(N >= 1);
        debug_assert_eq!(core::ptr::null::<HazPtrRecord>() as usize, 0);

        loop {
            let avail = self.hazptrs.head_available.load(Ordering::Acquire);
            if avail.is_null() {
                return (avail, 0);
            }
            debug_assert_ne!(avail, LOCK_BIT as *mut _);
            if (avail as usize & LOCK_BIT) == 0 {
                // The available list is not currently locked.
                //
                // XXX: This could be a fetch_or and allow progress even if there's a new (but
                // unlocked) head. However, `AtomicPtr` doesn't support fetch_or at the moment, so
                // we'd have to convert it to an `AtomicUsize`. This will in turn make Miri fail
                // (with -Zmiri-tag-raw-pointers, which we want enabled) to track the provenance of
                // the pointer in question through the int-to-ptr conversion. The workaround is
                // probably to mock a type that is `AtomicUsize` with `fetch_or` with
                // `#[cfg(not(miri))]`, but is `AtomicPtr` with `compare_exchange` with
                // `#[cfg(miri)]`. It ain't pretty, but should do the job. The issue is tracked in
                // https://github.com/rust-lang/miri/issues/1993.
                if self
                    .hazptrs
                    .head_available
                    .compare_exchange_weak(
                        avail,
                        with_lock_bit(avail),
                        Ordering::AcqRel,
                        Ordering::Relaxed,
                    )
                    .is_ok()
                {
                    // Safety: We hold the lock on the available list.
                    let (rec, n) = unsafe { self.try_acquire_available_locked::<N>(avail) };
                    debug_assert!(n >= 1, "head_available was not null");
                    debug_assert!(n <= N);
                    return (rec, n);
                } else {
                    #[cfg(not(any(loom, feature = "std")))]
                    core::hint::spin_loop();
                    #[cfg(any(loom, feature = "std"))]
                    crate::sync::yield_now();
                }
            }
        }
    }

    /// # Safety
    ///
    /// Must already hold the lock on the available list
    unsafe fn try_acquire_available_locked<const N: usize>(
        &self,
        head: *const HazPtrRecord,
    ) -> (*const HazPtrRecord, usize) {
        debug_assert!(N >= 1);
        debug_assert!(!head.is_null());

        let mut tail = head;
        let mut n = 1;
        let mut next = unsafe { &*tail }.available_next.load(Ordering::Relaxed);

        while !next.is_null() && n < N {
            debug_assert_eq!((next as usize) & LOCK_BIT, 0);
            tail = next;
            next = unsafe { &*tail }.available_next.load(Ordering::Relaxed);
            n += 1;
        }

        // NOTE: This releases the lock
        self.hazptrs.head_available.store(next, Ordering::Release);
        unsafe { &*tail }
            .available_next
            .store(core::ptr::null_mut(), Ordering::Relaxed);

        (head, n)
    }

    fn push_available(&self, head: &HazPtrRecord, tail: &HazPtrRecord) {
        debug_assert!(tail.available_next.load(Ordering::Relaxed).is_null());
        if cfg!(debug_assertions) {
            // XXX: check that head and tail are connected
        }
        debug_assert_eq!(head as *const _ as usize & LOCK_BIT, 0);
        loop {
            let avail = self.hazptrs.head_available.load(Ordering::Acquire);
            if (avail as usize & LOCK_BIT) == 0 {
                tail.available_next
                    .store(avail as *mut _, Ordering::Relaxed);
                if self
                    .hazptrs
                    .head_available
                    .compare_exchange_weak(
                        avail,
                        head as *const _ as *mut _,
                        Ordering::AcqRel,
                        Ordering::Relaxed,
                    )
                    .is_ok()
                {
                    break;
                }
            } else {
                #[cfg(not(any(loom, feature = "std")))]
                core::hint::spin_loop();
                #[cfg(any(loom, feature = "std"))]
                crate::sync::yield_now();
            }
        }
    }

    pub(crate) fn acquire_new(&self) -> &HazPtrRecord {
        // No free HazPtrRecords -- need to allocate a new one
        let hazptr = Box::into_raw(Box::new(HazPtrRecord {
            ptr: AtomicPtr::new(core::ptr::null_mut()),
            next: AtomicPtr::new(core::ptr::null_mut()),
            available_next: AtomicPtr::new(core::ptr::null_mut()),
        }));
        // And stick it at the head of the linked list
        let mut head = self.hazptrs.head.load(Ordering::Acquire);
        loop {
            // Safety: hazptr was never shared, so &mut is ok.
            unsafe { &mut *hazptr }.next.with_mut(|p| *p = head);
            match self.hazptrs.head.compare_exchange_weak(
                head,
                hazptr,
                // NOTE: Folly uses Release, but needs to be both for the load on success.
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => {
                    // NOTE: Folly uses SeqCst because it's the default, not clear if
                    // necessary.
                    self.hazptrs.count.fetch_add(1, Ordering::SeqCst);
                    // Safety: HazPtrRecords are never de-allocated while the domain lives.
                    break unsafe { &*hazptr };
                }
                Err(head_now) => {
                    // Head has changed, try again with that as our next ptr.
                    head = head_now
                }
            }
        }
    }

    /// Retire `ptr`, and reclaim it once it is safe to do so.
    ///
    /// `T` must be `Send` since it may be reclaimed by a different thread.
    ///
    /// # Safety
    ///
    /// 1. No [`HazardPointer`] will guard `ptr` from this point forward.
    /// 2. `ptr` has not already been retired unless it has been reclaimed since then.
    /// 3. `ptr` is valid as `&T` until `self` is dropped.
    pub unsafe fn retire_ptr<T, P>(&self, ptr: *mut T) -> usize
    where
        T: Send,
        P: Pointer<T>,
    {
        // First, stick ptr onto the list of retired objects.
        //
        // Safety: ptr will not be accessed after Domain is dropped, which is when 'domain ends.
        let retired = Box::new(unsafe {
            Retired::new(self, ptr, |ptr: *mut dyn Reclaim| {
                // Safety: the safety requirements of `from_raw` are the same as the ones to call
                // the deleter.
                let _ = P::from_raw(ptr as *mut T);
            })
        });

        self.push_list(retired)
    }

    /// Reclaim as many retired objects as possible.
    ///
    /// Returns the number of retired objects that were reclaimed.
    pub fn eager_reclaim(&self) -> usize {
        self.nbulk_reclaims.fetch_add(1, Ordering::Acquire);
        self.do_reclamation(0)
    }

    // Only used for tests -- waits for no outstanding reclaims.
    #[doc(hidden)]
    pub fn cleanup(&self) {
        self.eager_reclaim();
        self.wait_for_zero_bulk_reclaims(); // wait for concurrent bulk_reclaim-s
    }

    fn push_list(&self, mut retired: Box<Retired>) -> usize {
        assert!(
            retired.next.with_mut(|p| p.is_null()),
            "only single item retiring is supported atm"
        );

        crate::asymmetric_light_barrier();

        let retired = Box::into_raw(retired);
        unsafe { self.untagged[Self::calc_shard(retired)].push(retired, retired) };
        self.count.fetch_add(1, Ordering::Release);

        self.check_threshold_and_reclaim()
    }

    fn threshold(&self) -> isize {
        RCOUNT_THRESHOLD.max(HCOUNT_MULTIPLIER * self.hazptrs.count.load(Ordering::Acquire))
    }

    fn check_count_threshold(&self) -> isize {
        let mut rcount = self.count.load(Ordering::Acquire);
        while rcount > self.threshold() {
            match self
                .count
                .compare_exchange_weak(rcount, 0, Ordering::AcqRel, Ordering::Relaxed)
            {
                Ok(_) => {
                    #[cfg(all(feature = "std", target_pointer_width = "64", not(loom)))]
                    {
                        self.due_time
                            .store(Self::now() + SYNC_TIME_PERIOD, Ordering::Release);
                    }
                    return rcount;
                }
                Err(rcount_now) => rcount = rcount_now,
            }
        }
        0
    }

    #[cfg(all(feature = "std", target_pointer_width = "64", not(loom)))]
    fn check_due_time(&self) -> isize {
        let time = Self::now();
        let due = self.due_time.load(Ordering::Acquire);
        if time < due
            || self
                .due_time
                .compare_exchange(
                    due,
                    time + SYNC_TIME_PERIOD,
                    Ordering::AcqRel,
                    Ordering::Relaxed,
                )
                .is_err()
        {
            // Not yet due, or someone else noticed we were due already.
            return 0;
        }
        self.count.swap(0, Ordering::AcqRel)
    }

    fn check_threshold_and_reclaim(&self) -> usize {
        #[allow(unused_mut)]
        let mut rcount = self.check_count_threshold();
        if rcount == 0 {
            // TODO: Implement some kind of mock time for no_std.
            // Currently we reclaim only based on rcount on no_std
            // (also the reason for allow unused_mut)
            #[cfg(all(feature = "std", target_pointer_width = "64", not(loom)))]
            {
                rcount = self.check_due_time();
            }
            if rcount == 0 {
                return 0;
            }
        }

        self.nbulk_reclaims.fetch_add(1, Ordering::Acquire);
        self.do_reclamation(rcount)
    }

    fn do_reclamation(&self, mut rcount: isize) -> usize {
        let mut total_reclaimed = 0;
        loop {
            let mut done = true;
            let mut stolen_heads = [core::ptr::null_mut(); NUM_SHARDS];
            let mut empty = true;
            for (stolen_head, untagged) in stolen_heads.iter_mut().zip(&self.untagged) {
                *stolen_head = untagged.pop_all();
                if !stolen_head.is_null() {
                    empty = false;
                }
            }

            if !empty {
                crate::asymmetric_heavy_barrier(crate::HeavyBarrierKind::Expedited);

                // Find all guarded addresses.
                #[allow(clippy::mutable_key_type)]
                //XXX: Maybe use a sorted vec to reduce heap allocations, and have O(log(n)) lookups
                let mut guarded_ptrs = BTreeSet::new();
                let mut node = self.hazptrs.head.load(Ordering::Acquire);
                while !node.is_null() {
                    // Safety: HazPtrRecords are never de-allocated while the domain lives.
                    let n = unsafe { &*node };
                    guarded_ptrs.insert(n.ptr.load(Ordering::Acquire));
                    node = n.next.load(Ordering::Relaxed);
                }

                let (nreclaimed, is_done) =
                    self.match_reclaim_untagged(stolen_heads, &guarded_ptrs);
                done = is_done;

                rcount -= nreclaimed as isize;
                total_reclaimed += nreclaimed;
            }

            if rcount != 0 {
                self.count.fetch_add(rcount, Ordering::Release);
            }
            rcount = self.check_count_threshold();
            if rcount == 0 && done {
                break;
            }
        }
        self.nbulk_reclaims.fetch_sub(1, Ordering::Acquire);
        total_reclaimed
    }

    fn match_reclaim_untagged(
        &self,
        stolen_heads: [*mut Retired; NUM_SHARDS],
        guarded_ptrs: &BTreeSet<*mut u8>,
    ) -> (usize, bool) {
        let mut unreclaimed = core::ptr::null_mut();
        let mut unreclaimed_tail = unreclaimed;
        let mut nreclaimed = 0;

        // Sort nodes into those that can be reclaimed,
        // and those that are still guarded
        for mut node in stolen_heads {
            // XXX: This can probably also be hoisted out of the loop, and we can do a _single_
            // reclaim_unprotected call as well.
            let mut reclaimable = core::ptr::null_mut();

            while !node.is_null() {
                // Safety: All accessors only access the head, and the head is no longer pointing here.
                let n = unsafe { &*node };
                let next = n.next.load(Ordering::Relaxed);
                debug_assert_ne!(node, next);

                if !guarded_ptrs.contains(&(n.ptr as *mut u8)) {
                    // No longer guarded -- safe to reclaim.
                    n.next.store(reclaimable, Ordering::Relaxed);
                    reclaimable = node;
                    nreclaimed += 1;
                } else {
                    // Not safe to reclaim -- still guarded.
                    n.next.store(unreclaimed, Ordering::Relaxed);
                    unreclaimed = node;
                    if unreclaimed_tail.is_null() {
                        unreclaimed_tail = unreclaimed;
                    }
                }

                node = next;
            }

            // Safety:
            //
            // 1. No item in `reclaimable` has a hazard pointer guarding it, so we have the
            //    only remaining pointer to each item.
            // 2. Every Retired was originally constructed from a Box, and is thus valid.
            // 3. None of these Retired have been dropped previously, because we atomically
            //    stole the entire sublist from self.untagged.
            unsafe { self.reclaim_unprotected(reclaimable) };
        }

        let done = self.untagged.iter().all(|u| u.is_empty());
        // NOTE: We're _not_ respecting sharding here, presumably to avoid multiple push CASes.
        unsafe { self.untagged[0].push(unreclaimed, unreclaimed_tail) };

        (nreclaimed, done)
    }

    // # Safety
    //
    // All `Retired` nodes in `retired` are valid, unaliased, and can be taken ownership of.
    unsafe fn reclaim_unprotected(&self, mut retired: *mut Retired) {
        while !retired.is_null() {
            let next = unsafe { &*retired }.next.load(Ordering::Relaxed);
            let n = unsafe { Box::from_raw(retired) };

            // We uphold the Pointer::from_raw guarantees since:
            //
            //  - `n.ptr` has not yet been dropped because it was still on `retired`.
            //  - it will not be dropped again because we have removed it from `retired`.
            //  - `n.ptr` was allocated by the corresponding allocation method as per the
            //    safety guarantees of calling `retire`.
            unsafe { (n.deleter)(n.ptr) };

            // TODO: Support linked nodes for more efficient deallocation (`children`).

            retired = next;
        }
    }

    #[cfg(any(loom, miri))]
    fn now() -> u64 {
        0
    }

    #[cfg(all(feature = "std", target_pointer_width = "64", not(loom), not(miri)))]
    fn now() -> u64 {
        u64::try_from(
            std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .expect("system time is set to before the epoch")
                .as_nanos(),
        )
        .expect("system time is too far into the future")
    }

    fn reclaim_all_objects(&mut self) {
        for i in 0..NUM_SHARDS {
            let head = self.untagged[i].pop_all();
            // Safety: &mut self implies that there are no active Hazard Pointers.
            // So, all objects are safe to reclaim.
            unsafe { self.reclaim_list_transitive(head) };
        }
    }

    unsafe fn reclaim_list_transitive(&self, head: *mut Retired) {
        // TODO: handle children
        unsafe { self.reclaim_unconditional(head) };
    }

    /// Equivalent to reclaim_unprotected, but differs in name to clarify that it will remove
    /// indiscriminately.
    unsafe fn reclaim_unconditional(&self, head: *mut Retired) {
        unsafe { self.reclaim_unprotected(head) };
    }

    fn wait_for_zero_bulk_reclaims(&self) {
        while self.nbulk_reclaims.load(Ordering::Acquire) > 0 {
            #[cfg(not(any(loom, feature = "std")))]
            core::hint::spin_loop();
            #[cfg(any(loom, feature = "std"))]
            crate::sync::yield_now();
        }
    }

    fn free_hazptr_recs(&mut self) {
        // NOTE: folly skips this step for the global domain, but the global domain is never
        // dropped in the first place, as it is a static. See
        //
        //   https://doc.rust-lang.org/reference/items/static-items.html

        let mut node: *mut HazPtrRecord = self.hazptrs.head.with_mut(|p| *p);
        while !node.is_null() {
            // Safety: we have &mut self, so no-one holds any of our hazard pointers any more,
            // as all holders are tied to 'domain (which must have expired to create the &mut).
            let mut n: Box<HazPtrRecord> = unsafe { Box::from_raw(node) };
            node = n.next.with_mut(|p| *p);
            drop(n);
        }
    }

    #[cfg(not(loom))]
    fn calc_shard(input: *mut Retired) -> usize {
        (input as usize >> IGNORED_LOW_BITS) & SHARD_MASK
    }

    #[cfg(loom)]
    fn calc_shard(_input: *mut Retired) -> usize {
        SHARD.fetch_add(1, Ordering::Relaxed) & SHARD_MASK
    }
}

impl<F> Drop for Domain<F> {
    fn drop(&mut self) {
        self.shutdown = true;

        self.reclaim_all_objects();
        self.free_hazptr_recs();
    }
}

struct HazPtrRecords {
    head: AtomicPtr<HazPtrRecord>,
    head_available: AtomicPtr<HazPtrRecord>,
    count: AtomicIsize,
}

struct Retired {
    // This is + 'domain, which is enforced for anything that constructs a Retired
    ptr: *mut dyn Reclaim,
    /// # Safety
    ///
    /// Safe to call when it would be safe to call `from_raw(ptr)` on the originating `Pointer`
    /// type.
    deleter: unsafe fn(ptr: *mut dyn Reclaim),
    next: AtomicPtr<Retired>,
}

impl Retired {
    /// # Safety
    ///
    /// `ptr` will not be accessed after `'domain` ends.
    unsafe fn new<'domain, F>(
        _: &'domain Domain<F>,
        ptr: *mut (dyn Reclaim + 'domain),
        deleter: unsafe fn(ptr: *mut dyn Reclaim),
    ) -> Self {
        Retired {
            ptr: unsafe { core::mem::transmute::<_, *mut (dyn Reclaim + 'static)>(ptr) },
            deleter,
            next: AtomicPtr::new(core::ptr::null_mut()),
        }
    }
}

struct RetiredList {
    head: AtomicPtr<Retired>,
}

impl RetiredList {
    // Macro to make new const only when not in loom.
    #[cfg(not(loom))]
    const fn new() -> Self {
        Self {
            head: AtomicPtr::new(core::ptr::null_mut()),
        }
    }
    #[cfg(loom)]
    fn new() -> Self {
        Self {
            head: AtomicPtr::new(core::ptr::null_mut()),
        }
    }

    unsafe fn push(&self, sublist_head: *mut Retired, sublist_tail: *mut Retired) {
        if sublist_head.is_null() {
            // Pushing an empty list is easy.
            return;
        }

        // Stick it at the head of the linked list
        let head_ptr = &self.head;
        let mut head = head_ptr.load(Ordering::Acquire);
        loop {
            // Safety: we haven't moved anything in Retire, and we own the head, so last_next is
            // still valid.
            unsafe { &*sublist_tail }
                .next
                .store(head, Ordering::Release);
            match head_ptr.compare_exchange_weak(
                head,
                sublist_head,
                // NOTE: Folly uses Release, but needs to be both for the load on success.
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => break,
                Err(head_now) => {
                    // Head has changed, try again with that as our next ptr.
                    head = head_now
                }
            }
        }
    }

    fn pop_all(&self) -> *mut Retired {
        self.head.swap(core::ptr::null_mut(), Ordering::Acquire)
    }

    fn is_empty(&self) -> bool {
        self.head.load(Ordering::Relaxed).is_null()
    }
}

// Helpers to set and unset the lock bit on a `*mut HazPtrRecord` without losing pointer
// provenance. See https://github.com/rust-lang/miri/issues/1993 for details.
fn with_lock_bit(ptr: *mut HazPtrRecord) -> *mut HazPtrRecord {
    int_to_ptr_with_provenance(ptr as usize | LOCK_BIT, ptr)
}
fn without_lock_bit(ptr: *mut HazPtrRecord) -> *mut HazPtrRecord {
    int_to_ptr_with_provenance(ptr as usize & !LOCK_BIT, ptr)
}
fn int_to_ptr_with_provenance<T>(addr: usize, prov: *mut T) -> *mut T {
    let ptr = prov.cast::<u8>();
    ptr.wrapping_add(addr.wrapping_sub(ptr as usize)).cast()
}

/// ```compile_fail
/// use haphazard::*;
/// let dw = Domain::global();
/// let dr = Domain::new(&());
///
/// let x: AtomicPtr<i32, Global> = AtomicPtr::from(Box::new(42));
///
/// // Reader uses a different domain thant the writer!
/// let mut h = HazardPointer::new_in_domain(&dr);
///
/// // This shouldn't compile because families differ.
/// let _ = unsafe { x.load(&mut h).expect("not null") };
/// ```
#[cfg(doctest)]
struct CannotConfuseGlobalWriter;

/// ```compile_fail
/// use haphazard::*;
/// let dw = Domain::new(&());
/// let dr = Domain::global();
///
/// let x: AtomicPtr<i32, ()> = AtomicPtr::from(Box::new(42));
///
/// // Reader uses a different domain thant the writer!
/// let mut h = HazardPointer::new_in_domain(&dr);
///
/// // This shouldn't compile because families differ.
/// let _ = unsafe { x.load(&mut h).expect("not null") };
/// ```
#[cfg(doctest)]
struct CannotConfuseGlobalReader;

/// ```compile_fail
/// use haphazard::*;
/// let dw = unique_domain!();
/// let dr = unique_domain!();
///
/// fn build_ptr_in_domain<T, F, P, B>(_: &Domain<F>, builder: B) -> AtomicPtr<T, F, P>
/// where
///     B: Fn() -> AtomicPtr<T, F, P>,
/// {
///     builder()
/// }
/// let x = build_ptr_in_domain(&dw, || AtomicPtr::from(Box::new(42)));
///
/// // Reader uses a different domain thant the writer!
/// let mut h = HazardPointer::new_in_domain(&dr);
///
/// // This shouldn't compile because families differ.
/// let _ = x.safe_load(&mut h).expect("not null");
/// ```
#[cfg(doctest)]
struct CannotConfuseAcrossFamilies;

/// Ensures the inner type (`UniqueFamily`) defined by unique_domain!() is not namable.
/// ```compile_fail
/// use haphazard::*;
/// let dw = unique_domain!();
/// let bad_dw = Domain::new(&UniqueFamily);
/// ```
#[cfg(doctest)]
struct CannotNameInnerType;

#[cfg(test)]
mod tests {
    use super::Domain;
    use core::{ptr::null_mut, sync::atomic::Ordering};

    #[test]
    fn create_multiple_unique_domains() {
        use crate::Singleton;
        let domain_1 = unique_domain!();
        let domain_2 = unique_domain!();
    }

    #[test]
    fn acquire_many_skips_used_nodes() {
        let domain = Domain::new(&());
        let rec1 = domain.acquire();
        let rec2 = domain.acquire();
        let rec3 = domain.acquire();

        assert_eq!(
            rec3.next.load(Ordering::Relaxed),
            rec2 as *const _ as *mut _
        );
        assert_eq!(
            rec2.next.load(Ordering::Relaxed),
            rec1 as *const _ as *mut _
        );
        assert_eq!(rec1.next.load(Ordering::Relaxed), core::ptr::null_mut());
        domain.release(rec1);
        domain.release(rec3);
        let _ = rec1;
        let _ = rec3;

        let [one, two, three] = domain.acquire_many();

        assert_eq!(
            one.available_next.load(Ordering::Relaxed),
            two as *const _ as *mut _
        );
        assert_eq!(
            two.available_next.load(Ordering::Relaxed),
            three as *const _ as *mut _
        );
        assert_eq!(
            three.available_next.load(Ordering::Relaxed),
            core::ptr::null_mut(),
        );

        // one was previously rec3
        // two was previously rec1
        // so proper ordering for next is three -> rec3/one -> rec2 -> rec1/two
        assert_eq!(
            three.next.load(Ordering::Relaxed),
            one as *const _ as *mut _
        );
        assert_eq!(one.next.load(Ordering::Relaxed), rec2 as *const _ as *mut _);
        assert_eq!(rec2.next.load(Ordering::Relaxed), two as *const _ as *mut _);
    }

    #[test]
    fn acquire_many_orders_nodes_between_acquires() {
        let domain = Domain::new(&());
        let rec1 = domain.acquire();
        let rec2 = domain.acquire();

        assert_eq!(
            rec2.next.load(Ordering::Relaxed),
            rec1 as *const _ as *mut _
        );
        domain.release(rec2);
        let _ = rec2;

        // one was previously rec2
        // two is a new node
        let [one, two] = domain.acquire_many();

        assert_eq!(
            one.available_next.load(Ordering::Relaxed),
            two as *const _ as *mut _
        );
        assert_eq!(
            two.available_next.load(Ordering::Relaxed),
            core::ptr::null_mut(),
        );

        assert_eq!(two.next.load(Ordering::Relaxed), one as *const _ as *mut _);
        assert_eq!(one.next.load(Ordering::Relaxed), rec1 as *const _ as *mut _);
    }

    #[test]
    fn acquire_many_properly_orders_reused_nodes() {
        let domain = Domain::new(&());
        let rec1 = domain.acquire();
        let rec2 = domain.acquire();
        let rec3 = domain.acquire();

        // rec3 -> rec2 -> rec1
        assert_eq!(rec1.next.load(Ordering::Relaxed), core::ptr::null_mut(),);
        assert_eq!(
            rec2.next.load(Ordering::Relaxed),
            rec1 as *const _ as *mut _
        );
        assert_eq!(
            rec3.next.load(Ordering::Relaxed),
            rec2 as *const _ as *mut _
        );

        // rec1 available_next -> null
        domain.release(rec1);
        // rec2 available_next -> rec1
        domain.release(rec2);
        // rec3 available_next -> rec2
        domain.release(rec3);
        let _ = rec1;
        let _ = rec2;
        let _ = rec3;

        // one is rec3
        // two is rec2
        // three is rec1
        let [one, two, three, four, five] = domain.acquire_many();

        assert_eq!(
            one.available_next.load(Ordering::Relaxed),
            two as *const _ as *mut _
        );
        assert_eq!(
            two.available_next.load(Ordering::Relaxed),
            three as *const _ as *mut _
        );
        assert_eq!(
            three.available_next.load(Ordering::Relaxed),
            four as *const _ as *mut _
        );
        assert_eq!(
            four.available_next.load(Ordering::Relaxed),
            five as *const _ as *mut _
        );
        assert_eq!(
            five.available_next.load(Ordering::Relaxed),
            core::ptr::null_mut(),
        );

        assert_eq!(
            five.next.load(Ordering::Relaxed),
            four as *const _ as *mut _
        );
        assert_eq!(four.next.load(Ordering::Relaxed), one as *const _ as *mut _);
        assert_eq!(one.next.load(Ordering::Relaxed), two as *const _ as *mut _);
        assert_eq!(
            two.next.load(Ordering::Relaxed),
            three as *const _ as *mut _
        );
        assert_eq!(three.next.load(Ordering::Relaxed), null_mut());
    }
}