1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.

use crate::grpc_sys::{self, grpc_metadata, grpc_metadata_array};
use std::borrow::Cow;
use std::mem::ManuallyDrop;
use std::{mem, slice, str};

use crate::error::{Error, Result};

const BINARY_ERROR_DETAILS_KEY: &str = "grpc-status-details-bin";

fn normalize_key(key: &str, binary: bool) -> Result<Cow<'_, str>> {
    if key.is_empty() {
        return Err(Error::InvalidMetadata(
            "metadata key should not be empty".to_owned(),
        ));
    }
    let mut is_upper_case = false;
    for b in key.as_bytes() {
        let b = *b;
        if (b'A'..=b'Z').contains(&b) {
            is_upper_case = true;
            continue;
        } else if (b'a'..=b'z').contains(&b)
            || (b'0'..=b'9').contains(&b)
            || b == b'_'
            || b == b'-'
            || b == b'.'
        {
            continue;
        }
        return Err(Error::InvalidMetadata(format!("key {:?} is invalid", key)));
    }
    let key = if is_upper_case {
        Cow::Owned(key.to_ascii_lowercase())
    } else {
        Cow::Borrowed(key)
    };
    if binary {
        if !key.as_bytes().ends_with(b"-bin") {
            return Err(Error::InvalidMetadata(
                "binary key should end with '-bin'".to_owned(),
            ));
        }
    } else if key.as_bytes().ends_with(b"-bin") {
        return Err(Error::InvalidMetadata(
            "non-binary key should not end with '-bin'".to_owned(),
        ));
    }
    Ok(key)
}

/// Builder for immutable Metadata.
pub struct MetadataBuilder {
    arr: Metadata,
}

impl MetadataBuilder {
    /// Create a builder with empty initial capacity.
    pub fn new() -> MetadataBuilder {
        MetadataBuilder::with_capacity(0)
    }

    /// Create a builder with the given value.
    pub fn with_capacity(cap: usize) -> MetadataBuilder {
        MetadataBuilder {
            arr: Metadata::with_capacity(cap),
        }
    }

    /// Add a metadata holding an ASCII value.
    ///
    /// `key` must not use suffix (-bin) indicating a binary valued metadata entry.
    pub fn add_str(&mut self, key: &str, value: &str) -> Result<&mut MetadataBuilder> {
        if !value.is_ascii() {
            return Err(Error::InvalidMetadata(
                "only ascii value is accepted.".to_owned(),
            ));
        }
        for b in value.bytes() {
            if 0 == unsafe { libc::isprint(b as i32) } {
                return Err(Error::InvalidMetadata(
                    "Only printable chars are accepted.".to_owned(),
                ));
            }
        }
        let key = normalize_key(key, false)?;
        Ok(self.add_metadata(&key, value.as_bytes()))
    }

    fn add_metadata(&mut self, key: &str, value: &[u8]) -> &mut MetadataBuilder {
        unsafe {
            grpc_sys::grpcwrap_metadata_array_add(
                &mut self.arr.0,
                key.as_ptr() as _,
                key.len(),
                value.as_ptr() as _,
                value.len(),
            )
        }
        self
    }

    /// Add a metadata holding a binary value.
    ///
    /// `key` needs to have suffix (-bin) indicating a binary valued metadata entry.
    pub fn add_bytes(&mut self, key: &str, value: &[u8]) -> Result<&mut MetadataBuilder> {
        let key = normalize_key(key, true)?;
        Ok(self.add_metadata(&key, value))
    }

    /// Set binary error details to support rich error model.
    ///
    /// See also https://grpc.io/docs/guides/error/#richer-error-model.
    pub(crate) fn set_binary_error_details(&mut self, value: &[u8]) -> &mut MetadataBuilder {
        self.add_metadata(BINARY_ERROR_DETAILS_KEY, value)
    }

    /// Create `Metadata` with configured entries.
    pub fn build(mut self) -> Metadata {
        unsafe {
            grpc_sys::grpcwrap_metadata_array_shrink_to_fit(&mut self.arr.0);
        }
        self.arr
    }
}

/// A collection of metadata entries that can be exchanged during a call.
///
/// gRPC supports these types of metadata:
///
/// - Request headers
///
///     They are sent by the client at the beginning of a remote call before
///     any request messages are sent.
///
/// - Response headers
///
///     They are sent by the server at the beginning of a remote call handler
///     before any response messages are sent.
///
/// - Response trailers
///
///     They are sent by the server at the end of a remote call along with
///     resulting call status.
///
/// Metadata value can be ascii string or bytes. They are distinguish by the
/// key suffix, key of bytes value should have suffix '-bin'.
#[repr(C)]
pub struct Metadata(grpc_metadata_array);

impl Metadata {
    fn with_capacity(cap: usize) -> Metadata {
        unsafe {
            let mut arr = mem::MaybeUninit::uninit();
            grpc_sys::grpcwrap_metadata_array_init(arr.as_mut_ptr(), cap);
            Metadata(arr.assume_init())
        }
    }

    /// Returns the count of metadata entries.
    #[inline]
    pub fn len(&self) -> usize {
        self.0.count
    }

    /// Returns true if there is no metadata entries.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.0.count == 0
    }

    /// Returns the metadata entry at the `index`.
    ///
    /// `None` is returned if out of bound.
    pub fn get(&self, index: usize) -> Option<(&str, &[u8])> {
        if self.0.count <= index {
            return None;
        }
        let (mut key_len, mut val_len) = (0, 0);
        unsafe {
            let key = grpc_sys::grpcwrap_metadata_array_get_key(&self.0, index, &mut key_len);
            let val = grpc_sys::grpcwrap_metadata_array_get_value(&self.0, index, &mut val_len);
            let key_str = str::from_utf8_unchecked(slice::from_raw_parts(key as _, key_len));
            let val_bytes = slice::from_raw_parts(val as *const u8, val_len);
            Some((key_str, val_bytes))
        }
    }

    /// Returns an iterator over the metadata entries.
    pub fn iter(&self) -> MetadataIter<'_> {
        MetadataIter {
            data: self,
            index: 0,
        }
    }

    /// Decomposes a Metadata array into its raw components.
    ///
    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
    /// and the allocated capacity of the data (in elements). These are the same arguments in
    /// the same order as the arguments to from_raw_parts.
    ///
    /// After calling this function, the caller is responsible for the memory previously managed
    /// by the Metadata. The only way to do this is to convert the raw pointer, length, and
    /// capacity back into a Metadata with the from_raw_parts function, allowing the destructor
    /// to perform the cleanup.
    pub fn into_raw_parts(self) -> (*mut grpc_metadata, usize, usize) {
        let s = ManuallyDrop::new(self);
        (s.0.metadata, s.0.count, s.0.capacity)
    }

    /// Creates a Metadata directly from the raw components of another vector.
    ///
    /// ## Safety
    ///
    /// The operation is safe only if the three arguments are returned from `into_raw_parts`
    /// and only convert once.
    pub unsafe fn from_raw_parts(p: *mut grpc_metadata, len: usize, cap: usize) -> Metadata {
        Metadata(grpc_metadata_array {
            count: len,
            capacity: cap,
            metadata: p,
        })
    }

    /// Search for binary error details.
    pub(crate) fn search_binary_error_details(&self) -> &[u8] {
        for (k, v) in self.iter() {
            if k == BINARY_ERROR_DETAILS_KEY {
                return v;
            }
        }
        &[]
    }
}

impl Clone for Metadata {
    fn clone(&self) -> Metadata {
        let mut builder = MetadataBuilder::with_capacity(self.len());
        for (k, v) in self.iter() {
            // use `add_metadata` to skip validation.
            builder.add_metadata(k, v);
        }
        builder.build()
    }
}

impl Drop for Metadata {
    fn drop(&mut self) {
        unsafe {
            grpc_sys::grpcwrap_metadata_array_cleanup(&mut self.0);
        }
    }
}

unsafe impl Send for Metadata {}

/// Immutable metadata iterator
///
/// This struct is created by the iter method on `Metadata`.
pub struct MetadataIter<'a> {
    data: &'a Metadata,
    index: usize,
}

impl<'a> Iterator for MetadataIter<'a> {
    type Item = (&'a str, &'a [u8]);

    fn next(&mut self) -> Option<Self::Item> {
        let res = self.data.get(self.index);
        if res.is_some() {
            self.index += 1;
        }
        res
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let remain = self.data.0.count - self.index;
        (remain, Some(remain))
    }
}

impl<'a> IntoIterator for &'a Metadata {
    type IntoIter = MetadataIter<'a>;
    type Item = (&'a str, &'a [u8]);

    fn into_iter(self) -> MetadataIter<'a> {
        MetadataIter {
            data: self,
            index: 0,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_key_check() {
        let mut builder = MetadataBuilder::new();
        // Non-byte key should not end with '-bin'.
        assert!(builder.add_str("key-bin", "value").is_err());
        // Byte key should end with '-bin'.
        assert!(builder.add_bytes("key", b"value").is_err());
        // Key should not be empty.
        assert!(builder.add_str("", "value").is_err());
        // Key should follow the rule ^[a-z0-9_-.]+$
        assert!(builder.add_str(":key", "value").is_err());
        assert!(builder.add_str("key~", "value").is_err());
        assert!(builder.add_str("ke+y", "value").is_err());
        // Only printable ascii value is accepted when `add_str`.
        assert!(builder.add_str("key", "❤").is_err());
        assert!(builder.add_str("key", "\0").is_err());
        assert!(builder.add_str("key", "\n").is_err());

        builder.add_str("key", "value").unwrap();
        builder.add_str("_", "value").unwrap();
        builder.add_str("-", "value").unwrap();
        builder.add_str(".", "value").unwrap();
        builder.add_bytes("key-bin", b"value").unwrap();
    }

    #[test]
    fn test_metadata() {
        let mut builder = MetadataBuilder::new();
        let mut meta_kvs = vec![];
        for i in 0..5 {
            let key = format!("K{}", i);
            let val = format!("v{}", i);
            builder.add_str(&key, &val).unwrap();
            meta_kvs.push((key.to_ascii_lowercase(), val.into_bytes()));
        }
        for i in 5..10 {
            let key = format!("k{}-Bin", i);
            let val = format!("v{}", i);
            builder.add_bytes(&key, val.as_bytes()).unwrap();
            meta_kvs.push((key.to_ascii_lowercase(), val.into_bytes()));
        }
        let metadata = builder.build();
        for (i, (exp, res)) in meta_kvs.iter().zip(&metadata).enumerate() {
            let kv = metadata.get(i).unwrap();
            assert_eq!(kv, res);
            assert_eq!(res, (exp.0.as_str(), exp.1.as_slice()));
        }
        assert!(metadata.get(10).is_none());
        assert_eq!(metadata.len(), 10);
        assert!(!metadata.is_empty());
        {
            let mut iter = metadata.iter();
            for i in 0..10 {
                assert_eq!(iter.size_hint(), (10 - i, Some(10 - i)));
                iter.next();
            }
            assert_eq!(iter.size_hint(), (0, Some(0)));
        }

        let metadata1 = metadata.clone();
        for (x, y) in metadata.iter().zip(&metadata1) {
            assert_eq!(x, y);
        }
        drop(metadata);
        // Ensure deep copy.
        assert!(metadata1.get(0).is_some());

        let empty_metadata = MetadataBuilder::new().build();
        assert!(empty_metadata.is_empty());
        assert_eq!(empty_metadata.len(), 0);
    }
}