1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
//! # Goose
//! 
//! Have you ever been attacked by a goose?
//! 
//! Goose is a load testing tool based on [Locust](https://locust.io/).
//! User behavior is defined with standard Rust code.
//! 
//! Goose load tests are built by creating an application with Cargo,
//! and declaring a dependency on the Goose library.
//! 
//! Goose uses the `reqwest::blocking` API to provide a convenient HTTP
//! client. (Async support is on the roadmap, also provided through the
//! `reqwest` library.)
//! 
//! ## Creating and running a Goose load test
//! 
//! ### Creating a simple Goose load test
//! 
//! First create a new empty cargo application, for example:
//! 
//! ```bash
//! $ mkdir loadtest
//! $ cd loadtest/
//! $ cargo init
//!      Created binary (application) package
//! ```
//! 
//! Add Goose as a dependency in `Cargo.toml`:
//! 
//! ```toml
//! [dependencies]
//! goose = "0.4"
//! ```
//! 
//! Add the following boilerplate use declarations at the top of your `src/main.rs`:
//! 
//! ```rust
//! use goose::{goose_init, goose_launch};
//! use goose::goose::{GooseTest, GooseTaskSet, GooseClient, GooseTask};
//! ```
//! 
//! Below your `main` funcation (which currently is the default `Hello, world!`), add
//! one or more load test functions. The names of these functions are arbitrary, but it is
//! recommended you use self-documenting names. Each load test function must accept a mutable
//! GooseClient pointer. For example:
//! 
//! ```rust
//! fn loadtest_foo(client: &mut GooseClient) {
//!   let _response = client.get("/path/to/foo");
//! }   
//! ```
//! 
//! In the above example, we're using the GooseClient helper method `get` to load a path
//! on the website we are load testing. This helper creates a Reqwest request builder, and
//! uses it to build and execute a request for the above path. If you want access to the
//! request builder object, you can instead use the `goose_get` helper, for example to
//! set a timout on this specific request:
//! 
//! ```rust
//! use std::time;
//! 
//! fn loadtest_bar(client: &mut GooseClient) {
//!   let three_seconds = time::Duration::from_secs(3);
//!   let request_builder = client.goose_get("/path/to/bar");
//!   let _response = client.goose_send(request_builder.timeout(three_seconds));
//! }   
//! ```
//! 
//! We pass the `request_builder` object to `goose_send` which builds and executes it, also
//! collecting useful statistics which can be viewed with the `--print-stats` flag.
//! 
//! Once all our tasks are created, we edit the main function to initialize goose and register
//! the tasks. In this very simple example we only have two tasks to register, while in a real
//! load test you can have any number of task sets with any number of individual tasks.
//! 
//! ```goose
//! fn main() {
//!   // Initialize Goose.
//!   let goose_state = goose_init();
//! 
//!   // Initialize a single object to hold all our task sets.
//!   let mut goose_test = GooseTest::new();
//! 
//!   // Create and configure our first task set.
//!   let mut loadtest_tasks = GooseTaskSet::new("LoadtestTasks")
//!     // Apply random sleep after each task runs.
//!     .set_wait_time(0, 3);
//! 
//!   // Register the foo task, assigning it a weight of 10.
//!   loadtest_tasks.register_task(GooseTask::new().set_weight(10).set_function(loadtest_foo));
//!   // Register the bar task, assigning it a weight of 2 (so it runs 1/5 as
//!   // often as bar). Apply a task name which shows up in statistics.
//!   loadtest_tasks.register_task(GooseTask::named("bar").set_weight(2).set_function(loadtest_bar));
//! 
//!   // Register our task set.
//!   goose_test.register_taskset(loadtest_tasks);
//! 
//!   // With all task sets and tasks registered, launch the load test.
//!   goose_launch(goose_state, goose_test);
//! }
//! ```
//! 
//! Goose now spins up a configurable number of clients, each simulating a user on your
//! website. Thanks to Reqwest, each user maintains its own client state, handling cookies
//! and more so your "users" can log in, fill out forms, and more, as real users on your
//! sites would do.
//! 
//! ### Running the Goose load test
//! 
//! Attempts to run our example will result in an error, as we have not yet defined the
//! host against which this loadtest should be run. We intentionally do not hard code the
//! host in the individual tasks, as this allows us to run the test against different
//! environments, such as local and staging.
//! 
//! ```bash
//! $ cargo run --release -- 
//!    Compiling loadtest v0.1.0 (~/loadtest)
//!     Finished release [optimized] target(s) in 1.52s
//!      Running `target/release/loadtest`
//! 05:33:06 [ERROR] Host must be defined globally or per-TaskSet. No host defined for LoadtestTasks.
//! ```
//! Pass in the `-h` flag to see all available run-time options. For now, we'll use a few
//! options to customize our load test.
//! 
//! ```bash
//! $ cargo run --release -- --host http://apache.fosciana --print-stats -t 30s -v
//! ```
//! 
//! The first option we specified is `--host`, and in this case tells Goose to run the load test
//! against an 8-core VM on my local network. The `--print-stats` flag configures Goose to collect
//! statistics as the load test runs, printing running statistics during the test and final summary
//! statistics when finished. The `-t 30s` option tells Goose to end the load test after 30 seconds
//! (for real load tests you'll certainly want to run it longer, you can use `m` to specify minutes
//! and `h` to specify hours. For example, `-t 1h30m` would run the load test for 1 hour 30 minutes).
//! Finally, the `-v` flag tells goose to display INFO and higher level logs to stdout, giving more
//! insight into what is happening. (Additional `-v` flags will result in considerably more debug
//! output, and are not recommended for running actual load tests; they're only useful if you're
//! trying to debug Goose itself.)
//! 
//! Running the test results in the following output (broken up to explain it as it goes):
//! 
//! ```bash
//!    Finished release [optimized] target(s) in 0.05s
//!     Running `target/release/loadtest --host 'http://apache.fosciana' --print-stats -t 30s -v`
//! 05:56:30 [ INFO] Output verbosity level: INFO
//! 05:56:30 [ INFO] Logfile verbosity level: INFO
//! 05:56:30 [ INFO] Writing to log file: goose.log

//! ```
//! 
//! By default Goose will write a log file with INFO and higher level logs into the same directory
//! as you run the test from.
//! 
//! ```bash
//! 05:56:30 [ INFO] run_time = 30
//! 05:56:30 [ INFO] concurrent clients defaulted to 8 (number of CPUs)
//! 05:56:30 [ INFO] hatch_rate defaulted to 8 (number of CPUs)
//! ```
//! 
//! Goose will default to launching 1 client per available CPU core, and will launch them all in
//! one second. You can change how many clients are launched with the `-c` option, and you can
//! change how many clients are launched per second with the `-r` option. For example, `-c 30 -r 2`
//! would launch 30 clients over 15 seconds, or two clients per second.
//! 
//! ```bash
//! 05:56:30 [ INFO] global host configured: http://apache.fosciana
//! 05:56:30 [ INFO] launching client 1 from LoadtestTasks...
//! 05:56:30 [ INFO] launching client 2 from LoadtestTasks...
//! 05:56:30 [ INFO] launching client 3 from LoadtestTasks...
//! 05:56:30 [ INFO] launching client 4 from LoadtestTasks...
//! 05:56:30 [ INFO] launching client 5 from LoadtestTasks...
//! 05:56:30 [ INFO] launching client 6 from LoadtestTasks...
//! 05:56:30 [ INFO] launching client 7 from LoadtestTasks...
//! 05:56:31 [ INFO] launching client 8 from LoadtestTasks...
//! 05:56:31 [ INFO] launched 8 clients...
//! ```
//! 
//! Each client is launched in its own thread with its own client state. Goose is able to make
//! very efficient use of server resources.
//! 
//! ```bash
//! 05:56:46 [ INFO] printing running statistics after 15 seconds...
//! ------------------------------------------------------------------------------ 
//!  Name                    | # reqs         | # fails        | req/s  | fail/s
//!  ----------------------------------------------------------------------------- 
//!  GET /path/to/foo        | 15,795         | 0 (0%)         | 1,053  | 0    
//!  GET bar                 | 3,161          | 0 (0%)         | 210    | 0    
//!  ------------------------+----------------+----------------+--------+--------- 
//!  Aggregated              | 18,956         | 0 (0%)         | 1,263  | 0    
//! ------------------------------------------------------------------------------
//! ```
//! 
//! When printing statistics, by default Goose will display running values approximately
//! every 15 seconds. Running statistics are broken into two tables. The first, above,
//! shows how many requests have been made, how many of them failed (non-2xx response),
//! and the corresponding per-second rates.
//! 
//! Note that Goose respected the per-task weights we set, and `foo` (with a weight of
//! 10) is being loaded five times as often as `bar` (with a weight of 2). Also notice
//! that because we didn't name the `foo` task by default we see the URL loaded in the
//! statistics, whereas we did name the `bar` task so we see the name in the statistics.
//! 
//! ```bash
//!  Name                    | Avg (ms)   | Min        | Max        | Mean      
//!  ----------------------------------------------------------------------------- 
//!  GET /path/to/foo        | 0.67       | 0.31       | 13.51      | 0.53      
//!  GET bar                 | 0.60       | 0.33       | 13.42      | 0.53      
//!  ------------------------+------------+------------+------------+------------- 
//!  Aggregated              | 0.66       | 0.31       | 13.51      | 0.56      
//! ```
//! 
//! The second table in running statistics provides details on response times. In our
//! example (which is running over wifi from my development laptop), on average each
//! page is returning within `0.66` milliseconds. The quickest page response was for 
//! `foo` within `0.31` milliseconds. The slowest page response was also for `foo` within
//! `13.51` milliseconds.
//! 
//! 
//! ```bash
//! 05:37:10 [ INFO] stopping after 30 seconds...
//! 05:37:10 [ INFO] waiting for clients to exit
//! ```
//! 
//! Our example only runs for 30 seconds, so we only see running statistics once. When
//! the test completes, we get more detail in the final summary. The first two tables
//! are the same as what we saw earlier, however now they include all statistics for the
//! entire load test:
//! 
//! ```bash
//! ------------------------------------------------------------------------------ 
//!  Name                    | # reqs         | # fails        | req/s  | fail/s
//!  ----------------------------------------------------------------------------- 
//!  GET bar                 | 6,050          | 0 (0%)         | 201    | 0    
//!  GET /path/to/foo        | 30,257         | 0 (0%)         | 1,008  | 0    
//!  ------------------------+----------------+----------------+--------+---------- 
//!  Aggregated              | 36,307         | 0 (0%)         | 1,210  | 0    
//! -------------------------------------------------------------------------------
//!  Name                    | Avg (ms)   | Min        | Max        | Mean      
//!  ----------------------------------------------------------------------------- 
//!  GET bar                 | 0.66       | 0.32       | 108.87     | 0.53      
//!  GET /path/to/foo        | 0.68       | 0.31       | 109.50     | 0.53      
//!  ------------------------+------------+------------+------------+------------- 
//!  Aggregated              | 0.67       | 0.31       | 109.50     | 0.50      
//! -------------------------------------------------------------------------------
//! ```
//! 
//! The ratio between `foo` and `bar` remained 5:2 as expected. As the test ran,
//! however, we saw some slower page loads, with the slowest again `foo` this time
//! at `109.50` milliseconds.
//! 
//! ```bash
//! Slowest page load within specified percentile of requests (in ms):
//! ------------------------------------------------------------------------------
//! Name                    | 50%    | 75%    | 98%    | 99%    | 99.9%  | 99.99%
//! ----------------------------------------------------------------------------- 
//! GET bar                 | 0.53   | 0.66   | 2.17   | 5.37   | 18.72  | 123.16
//! GET /path/to/foo        | 0.53   | 0.66   | 2.65   | 10.60  | 18.00  | 107.32
//! ------------------------+------------+------------+------------+------------- 
//! Aggregated              | 0.53   | 0.66   | 2.37   | 6.45   | 18.32  | 108.18
//! ```
//! 
//! A new table shows additional information, breaking down response-time by
//! percentile. This shows that the slowest page loads only happened in the
//! slowest .001% of page loads, so were very much an edge case. 99.9% of the time
//! page loads happened in less than 20 milliseconds.


#[macro_use]
extern crate log;

//#[macro_use]
//extern crate goose_codegen;

extern crate structopt;

pub mod goose;

mod client;
mod stats;
mod util;

use std::collections::{BTreeMap, HashMap};
use std::f32;
use std::fs::File;
use std::path::PathBuf;
use std::sync::{Arc, mpsc};
use std::sync::atomic::{AtomicBool, Ordering};
use std::{thread, time};

use rand::thread_rng;
use rand::seq::SliceRandom;
use simplelog::*;
use structopt::StructOpt;
use url::Url;

use goose::{GooseTest, GooseTaskSet, GooseTask, GooseClient, GooseClientMode, GooseClientCommand, GooseRequest};

/// Global state for Goose loadtest.
#[derive(Debug, Clone)]
pub struct GooseState {
    configuration: Configuration,
    number_of_cpus: usize,
    run_time: usize,
    clients: usize,
    active_clients: usize,
}
/// Goose global state is initialized by calling GooseState::new(configuration).
impl GooseState {
    fn new(configuration: Configuration) -> GooseState {
        GooseState {
            configuration: configuration,
            number_of_cpus: num_cpus::get(),
            run_time: 0,
            clients: 0,
            active_clients: 0,
        }
    }
}

/// Configuration options available when launching a Goose loadtest.
#[derive(StructOpt, Debug, Clone)]
#[structopt(name = "client")]
pub struct Configuration {
    /// Host to load test in the following format: http://10.21.32.33
    #[structopt(short = "H", long, required=false, default_value="")]
    host: String,

    ///// Rust module file to import, e.g. '../other.rs'.
    //#[structopt(short = "f", long, default_value="goosefile")]
    //goosefile: String,

    /// Number of concurrent Goose users (defaults to available CPUs).
    #[structopt(short, long)]
    clients: Option<usize>,

    /// How many users to spawn per second (defaults to available CPUs).
    #[structopt(short = "r", long)]
    hatch_rate: Option<usize>,

    /// Stop after the specified amount of time, e.g. (300s, 20m, 3h, 1h30m, etc.).
    #[structopt(short = "t", long, required=false, default_value="")]
    run_time: String,

    /// Prints stats in the console
    #[structopt(long)]
    print_stats: bool,

    /// Includes status code counts in console stats
    #[structopt(long)]
    status_codes: bool,

    /// Only prints summary stats
    #[structopt(long)]
    only_summary: bool,

    /// Resets statistics once hatching has been completed
    #[structopt(long)]
    reset_stats: bool,

    /// Shows list of all possible Goose tasks and exits
    #[structopt(short, long)]
    list: bool,

    //// Number of seconds to wait for a simulated user to complete any executing task before exiting. Default is to terminate immediately.
    //#[structopt(short, long, required=false, default_value="0")]
    //stop_timeout: usize,

    // The number of occurrences of the `v/verbose` flag
    /// Debug level (-v, -vv, -vvv, etc.)
    #[structopt(short = "v", long, parse(from_occurrences))]
    verbose: u8,

    // The number of occurrences of the `g/log-level` flag
    /// Log level (-g, -gg, -ggg, etc.)
    #[structopt(short = "g", long, parse(from_occurrences))]
    log_level: u8,

    #[structopt(long, default_value="goose.log")]
    log_file: String,
}

/// Allocate a vector of weighted GooseClient
fn weight_task_set_clients(task_sets: &GooseTest, clients: usize, state: &GooseState) -> Vec<GooseClient> {
    trace!("weight_task_set_clients");

    let mut u: usize = 0;
    let mut v: usize;
    for task_set in &task_sets.task_sets {
        if u == 0 {
            u = task_set.weight;
        }
        else {
            v = task_set.weight;
            trace!("calculating greatest common denominator of {} and {}", u, v);
            u = util::gcd(u, v);
            trace!("inner gcd: {}", u);
        }
    }
    // 'u' will always be the greatest common divisor
    debug!("gcd: {}", u);

    // Build a weighted lists of task sets (identified by index)
    let mut weighted_task_sets = Vec::new();
    for (index, task_set) in task_sets.task_sets.iter().enumerate() {
        // divide by greatest common divisor so vector is as short as possible
        let weight = task_set.weight / u;
        trace!("{}: {} has weight of {} (reduced with gcd to {})", index, task_set.name, task_set.weight, weight);
        let mut weighted_sets = vec![index; weight];
        weighted_task_sets.append(&mut weighted_sets);
    }
    // Shuffle the weighted list of task sets
    weighted_task_sets.shuffle(&mut thread_rng());

    // Allocate a state for each client that will be spawned.
    info!("initializing client states...");
    let mut weighted_clients = Vec::new();
    let mut client_count = 0;
    let config = state.configuration.clone();
    loop {
        for task_sets_index in &weighted_task_sets {
            let task_set_host = task_sets.task_sets[*task_sets_index].host.clone();
            weighted_clients.push(GooseClient::new(
                client_count,
                task_sets.task_sets[*task_sets_index].task_sets_index,
                task_set_host,
                task_sets.task_sets[*task_sets_index].min_wait,
                task_sets.task_sets[*task_sets_index].max_wait,
                &config
            ));
            client_count += 1;
            if client_count >= clients {
                trace!("created {} weighted_clients", client_count);
                return weighted_clients;
            }
        }
    }
}

/// Returns a sequenced bucket of weighted usize pointers to Goose Tasks
fn weight_tasks(task_set: &GooseTaskSet) -> (Vec<Vec<usize>>, Vec<Vec<usize>>, Vec<Vec<usize>>) {
    trace!("weight_tasks for {}", task_set.name);

    // A BTreeMap of Vectors allows us to group and sort tasks per sequence value.
    let mut sequenced_tasks: BTreeMap <usize, Vec<GooseTask>> = BTreeMap::new();
    let mut sequenced_on_start_tasks: BTreeMap <usize, Vec<GooseTask>> = BTreeMap::new();
    let mut sequenced_on_stop_tasks: BTreeMap <usize, Vec<GooseTask>> = BTreeMap::new();
    let mut unsequenced_tasks: Vec<GooseTask> = Vec::new();
    let mut unsequenced_on_start_tasks: Vec<GooseTask> = Vec::new();
    let mut unsequenced_on_stop_tasks: Vec<GooseTask> = Vec::new();
    let mut u: usize = 0;
    let mut v: usize;
    // Handle ordering of tasks.
    for task in &task_set.tasks {
        if task.sequence > 0 {
            if task.on_start {
                if let Some(sequence) = sequenced_on_start_tasks.get_mut(&task.sequence) {
                    // This is another task with this order value.
                    sequence.push(task.clone());
                }
                else {
                    // This is the first task with this order value.
                    sequenced_on_start_tasks.insert(task.sequence, vec![task.clone()]);
                }
            }
            // Allow a task to be both on_start and on_stop.
            if task.on_stop {
                if let Some(sequence) = sequenced_on_stop_tasks.get_mut(&task.sequence) {
                    // This is another task with this order value.
                    sequence.push(task.clone());
                }
                else {
                    // This is the first task with this order value.
                    sequenced_on_stop_tasks.insert(task.sequence, vec![task.clone()]);
                }
            }
            if !task.on_start && !task.on_stop {
                if let Some(sequence) = sequenced_tasks.get_mut(&task.sequence) {
                    // This is another task with this order value.
                    sequence.push(task.clone());
                }
                else {
                    // This is the first task with this order value.
                    sequenced_tasks.insert(task.sequence, vec![task.clone()]);
                }
            }
        }
        else {
            if task.on_start {
                unsequenced_on_start_tasks.push(task.clone());
            }
            if task.on_stop {
                unsequenced_on_stop_tasks.push(task.clone());
            }
            if !task.on_start && !task.on_stop {
                unsequenced_tasks.push(task.clone());
            }
        }
        // Look for lowest common divisor amongst all tasks of any weight.
        if u == 0 {
            u = task.weight;
        }
        else {
            v = task.weight;
            trace!("calculating greatest common denominator of {} and {}", u, v);
            u = util::gcd(u, v);
            trace!("inner gcd: {}", u);
        }
    }
    // 'u' will always be the greatest common divisor
    debug!("gcd: {}", u);

    // Apply weight to sequenced tasks.
    let mut weighted_tasks: Vec<Vec<usize>> = Vec::new();
    for (_sequence, tasks) in sequenced_tasks.iter() {
        let mut sequence_weighted_tasks = Vec::new();
        for task in tasks {
            // divide by greatest common divisor so bucket is as small as possible
            let weight = task.weight / u;
            trace!("{}: {} has weight of {} (reduced with gcd to {})", task.tasks_index, task.name, task.weight, weight);
            let mut tasks = vec![task.tasks_index; weight];
            sequence_weighted_tasks.append(&mut tasks);
        }
        weighted_tasks.push(sequence_weighted_tasks);
    }
    // Apply weight to unsequenced tasks.
    trace!("created weighted_tasks: {:?}", weighted_tasks);
    let mut weighted_unsequenced_tasks = Vec::new();
    for task in unsequenced_tasks {
        // divide by greatest common divisor so bucket is as small as possible
        let weight = task.weight / u;
        trace!("{}: {} has weight of {} (reduced with gcd to {})", task.tasks_index, task.name, task.weight, weight);
        let mut tasks = vec![task.tasks_index; weight];
        weighted_unsequenced_tasks.append(&mut tasks);
    }
    // Unsequenced tasks come lost.
    weighted_tasks.push(weighted_unsequenced_tasks);

    // Apply weight to on_start sequenced tasks.
    let mut weighted_on_start_tasks: Vec<Vec<usize>> = Vec::new();
    for (_sequence, tasks) in sequenced_on_start_tasks.iter() {
        let mut sequence_on_start_weighted_tasks = Vec::new();
        for task in tasks {
            // divide by greatest common divisor so bucket is as small as possible
            let weight = task.weight / u;
            trace!("{}: {} has weight of {} (reduced with gcd to {})", task.tasks_index, task.name, task.weight, weight);
            let mut tasks = vec![task.tasks_index; weight];
            sequence_on_start_weighted_tasks.append(&mut tasks);
        }
        weighted_on_start_tasks.push(sequence_on_start_weighted_tasks);
    }
    // Apply weight to unsequenced on_start tasks.
    trace!("created weighted_on_start_tasks: {:?}", weighted_tasks);
    let mut weighted_on_start_unsequenced_tasks = Vec::new();
    for task in unsequenced_on_start_tasks {
        // divide by greatest common divisor so bucket is as small as possible
        let weight = task.weight / u;
        trace!("{}: {} has weight of {} (reduced with gcd to {})", task.tasks_index, task.name, task.weight, weight);
        let mut tasks = vec![task.tasks_index; weight];
        weighted_on_start_unsequenced_tasks.append(&mut tasks);
    }
    // Unsequenced tasks come lost.
    weighted_on_start_tasks.push(weighted_on_start_unsequenced_tasks);

    // Apply weight to on_stop sequenced tasks.
    let mut weighted_on_stop_tasks: Vec<Vec<usize>> = Vec::new();
    for (_sequence, tasks) in sequenced_on_stop_tasks.iter() {
        let mut sequence_on_stop_weighted_tasks = Vec::new();
        for task in tasks {
            // divide by greatest common divisor so bucket is as small as possible
            let weight = task.weight / u;
            trace!("{}: {} has weight of {} (reduced with gcd to {})", task.tasks_index, task.name, task.weight, weight);
            let mut tasks = vec![task.tasks_index; weight];
            sequence_on_stop_weighted_tasks.append(&mut tasks);
        }
        weighted_on_stop_tasks.push(sequence_on_stop_weighted_tasks);
    }
    // Apply weight to unsequenced on_stop tasks.
    trace!("created weighted_on_stop_tasks: {:?}", weighted_tasks);
    let mut weighted_on_stop_unsequenced_tasks = Vec::new();
    for task in unsequenced_on_stop_tasks {
        // divide by greatest common divisor so bucket is as small as possible
        let weight = task.weight / u;
        trace!("{}: {} has weight of {} (reduced with gcd to {})", task.tasks_index, task.name, task.weight, weight);
        let mut tasks = vec![task.tasks_index; weight];
        weighted_on_stop_unsequenced_tasks.append(&mut tasks);
    }
    // Unsequenced tasks come last.
    weighted_on_stop_tasks.push(weighted_on_stop_unsequenced_tasks);

    (weighted_on_start_tasks, weighted_tasks, weighted_on_stop_tasks)
}

fn is_valid_host(host: &str) -> bool {
    match Url::parse(host) {
        Ok(_) => true,
        Err(e) => {
            error!("invalid host '{}': {}", host, e);
            std::process::exit(1);
        }
    }
}

/// If run_time was specified, detect when it's time to shut down
fn timer_expired(started: time::Instant, run_time: usize) -> bool {
    if run_time > 0 && started.elapsed().as_secs() >= run_time as u64 {
        true
    }
    else {
        false
    }
}

/// Merge per-client-statistics from client thread into global parent statistics
fn merge_from_client(
    parent_request: &GooseRequest,
    client_request: &GooseRequest,
    config: &Configuration,
) -> GooseRequest {
    // Make a mutable copy where we can merge things
    let mut merged_request = parent_request.clone();
    merged_request.response_times.extend_from_slice(&client_request.response_times);
    merged_request.success_count += &client_request.success_count;
    merged_request.fail_count += &client_request.fail_count;
    // Only accrue overhead of merging status_code_counts if we're going to display the results
    if config.status_codes {
        for (status_code, count) in &client_request.status_code_counts {
            let new_count;
            // Add client count into global count
            if let Some(existing_status_code_count) = merged_request.status_code_counts.get(&status_code) {
                new_count = *existing_status_code_count + *count;
            }
            // No global count exists yet, so start with client count
            else {
                new_count = *count;
            }
            merged_request.status_code_counts.insert(*status_code, new_count);
        }
    }
    merged_request
}

pub fn goose_init() -> GooseState {
    let mut goose_state = GooseState::new(Configuration::from_args());

    // Allow optionally controlling debug output level
    let debug_level;
    match goose_state.configuration.verbose {
        0 => debug_level = LevelFilter::Warn,
        1 => debug_level = LevelFilter::Info,
        2 => debug_level = LevelFilter::Debug,
        _ => debug_level = LevelFilter::Trace,
    }

    // Allow optionally controlling log level
    let log_level;
    match goose_state.configuration.log_level {
        0 => log_level = LevelFilter::Info,
        1 => log_level = LevelFilter::Debug,
        _ => log_level = LevelFilter::Trace,
    }

    let log_file = PathBuf::from(&goose_state.configuration.log_file);

    CombinedLogger::init(vec![
        TermLogger::new(
            debug_level,
            Config::default(),
            TerminalMode::Mixed).unwrap(),
        WriteLogger::new(
            log_level,
            Config::default(),
            File::create(&log_file).unwrap(),
        )]).unwrap();
    info!("Output verbosity level: {}", debug_level);
    info!("Logfile verbosity level: {}", log_level);
    info!("Writing to log file: {}", log_file.display());

    // Don't allow overhead of collecting status codes unless we're printing statistics.
    if goose_state.configuration.status_codes && !goose_state.configuration.print_stats {
        error!("You must enable --print-stats to enable --status-codes.");
        std::process::exit(1);
    }

    // Don't allow overhead of collecting statistics unless we're printing them.
    if goose_state.configuration.only_summary && !goose_state.configuration.print_stats {
        error!("You must enable --print-stats to enable --only-summary.");
        std::process::exit(1);
    }

    // Configure maximum run time if specified, otherwise run until canceled.
    if goose_state.configuration.run_time != "" {
        goose_state.run_time = util::parse_timespan(&goose_state.configuration.run_time);
    }
    else {
        goose_state.run_time = 0;
    }
    info!("run_time = {}", goose_state.run_time);

    // Configure number of client threads to launch, default to the number of CPU cores available.
    goose_state.clients = match goose_state.configuration.clients {
        Some(c) => {
            if c == 0 {
                error!("At least 1 client is required.");
                std::process::exit(1);
            }
            else {
                c
            }
        }
        None => {
            let c = goose_state.number_of_cpus;
            info!("concurrent clients defaulted to {} (number of CPUs)", c);
            c
        }
    };
    debug!("clients = {}", goose_state.clients);

    goose_state
}

pub fn goose_launch(mut goose_state: GooseState, mut goose_test: GooseTest) {
    // At least one task set is required.
    if goose_test.task_sets.len() <= 0 {
        error!("No task sets defined in goosefile.");
        std::process::exit(1);
    }

    if goose_state.configuration.list {
        // Display task sets and tasks, then exit.
        println!("Available tasks:");
        for task_set in goose_test.task_sets {
            println!(" - {} (weight: {})", task_set.name, task_set.weight);
            for task in task_set.tasks {
                println!("    o {} (weight: {})", task.name, task.weight);
            }
        }
        std::process::exit(0);
    }

    // Configure number of client threads to launch per second, default to the number of CPU cores available.
    let hatch_rate = match goose_state.configuration.hatch_rate {
        Some(h) => {
            if h == 0 {
                error!("The hatch_rate must be greater than 0, and generally should be no more than 100 * NUM_CORES.");
                std::process::exit(1);
            }
            else {
                h
            }
        }
        None => {
            let h = goose_state.number_of_cpus;
            info!("hatch_rate defaulted to {} (number of CPUs)", h);
            h
        }
    };
    debug!("hatch_rate = {}", hatch_rate);

    // Confirm there's either a global host, or each task set has a host defined.
    if goose_state.configuration.host.len() == 0 {
        for task_set in &goose_test.task_sets {
            match &task_set.host {
                Some(h) => {
                    if is_valid_host(h) {
                        info!("host for {} configured: {}", task_set.name, h);
                    }
                }
                None => {
                    error!("Host must be defined globally or per-TaskSet. No host defined for {}.", task_set.name);
                    std::process::exit(1);
                }
            }
        }
    }
    else {
        if is_valid_host(&goose_state.configuration.host) {
            info!("global host configured: {}", goose_state.configuration.host);
        }
    }

    // Apply weights to tasks in each task set.
    for task_set in &mut goose_test.task_sets {
        let (weighted_on_start_tasks, weighted_tasks, weighted_on_stop_tasks) = weight_tasks(&task_set);
        task_set.weighted_on_start_tasks = weighted_on_start_tasks;
        task_set.weighted_tasks = weighted_tasks;
        task_set.weighted_on_stop_tasks = weighted_on_stop_tasks;
        debug!("weighted {} on_start: {:?} tasks: {:?} on_stop: {:?}", task_set.name, task_set.weighted_on_start_tasks, task_set.weighted_tasks, task_set.weighted_on_stop_tasks);
    }

    // Allocate a state for each of the clients we are about to start.
    goose_test.weighted_clients = weight_task_set_clients(&goose_test, goose_state.clients, &goose_state);

    // Our load test is officially starting.
    let mut started = time::Instant::now();
    // Spawn clients at hatch_rate per second, or one every 1 / hatch_rate fraction of a second.
    let sleep_float = 1.0 / hatch_rate as f32;
    let sleep_duration = time::Duration::from_secs_f32(sleep_float);
    // Collect client threads in a vector for when we want to stop them later.
    let mut clients = vec![];
    // Collect client thread channels in a vector so we can talk to the client threads.
    let mut client_channels = vec![];
    // Create a single channel allowing all Goose child threads to sync state back to parent
    let (all_threads_sender, parent_receiver): (mpsc::Sender<GooseClient>, mpsc::Receiver<GooseClient>) = mpsc::channel();
    // Spawn clients, each with their own weighted task_set.
    for mut thread_client in goose_test.weighted_clients.clone() {
        // Stop launching threads if the run_timer has expired.
        if timer_expired(started, goose_state.run_time) {
            break;
        }

        // Copy weighted tasks and weighted on start tasks into the client thread.
        thread_client.weighted_tasks = goose_test.task_sets[thread_client.task_sets_index].weighted_tasks.clone();
        thread_client.weighted_on_start_tasks = goose_test.task_sets[thread_client.task_sets_index].weighted_on_start_tasks.clone();
        thread_client.weighted_on_stop_tasks = goose_test.task_sets[thread_client.task_sets_index].weighted_on_stop_tasks.clone();
        // Remember which task group this client is using.
        thread_client.weighted_clients_index = goose_state.active_clients;

        // Create a per-thread channel allowing parent thread to control child threads.
        let (parent_sender, thread_receiver): (mpsc::Sender<GooseClientCommand>, mpsc::Receiver<GooseClientCommand>) = mpsc::channel();
        client_channels.push(parent_sender);

        // We can only launch tasks if the task list is non-empty
        if thread_client.weighted_tasks.len() > 0 {
            // Copy the client-to-parent sender channel, used by all threads.
            let thread_sender = all_threads_sender.clone();

            // Hatching a new Goose client.
            thread_client.set_mode(GooseClientMode::HATCHING);
            // Notify parent that our run mode has changed to Hatching.
            thread_sender.send(thread_client.clone()).unwrap();

            // Copy the appropriate task_set into the thread.
            let thread_task_set = goose_test.task_sets[thread_client.task_sets_index].clone();

            // We number threads from 1 as they're human-visible (in the logs), whereas active_clients starts at 0.
            let thread_number = goose_state.active_clients + 1;

            // Launch a new client.
            let client = thread::spawn(move || {
                 client::client_main(thread_number, thread_task_set, thread_client, thread_receiver, thread_sender)
            });

            clients.push(client);
            goose_state.active_clients += 1;
            debug!("sleeping {:?} milliseconds...", sleep_duration);
            thread::sleep(sleep_duration);
        }
    }
    // Restart the timer now that all threads are launched.
    started = time::Instant::now();
    info!("launched {} clients...", goose_state.active_clients);

    // Ensure we have request statistics when we're displaying running statistics.
    if goose_state.configuration.print_stats && !goose_state.configuration.only_summary {
        for (index, send_to_client) in client_channels.iter().enumerate() {
            send_to_client.send(GooseClientCommand::SYNC).unwrap();
            debug!("telling client {} to sync stats", index);
        }
    }

    // Track whether or not we've (optionally) reset the statistics after all clients started.
    let mut statistics_reset: bool = false;

    // Catch ctrl-c to allow clean shutdown to display statistics.
    let canceled = Arc::new(AtomicBool::new(false));
    let caught_ctrlc = canceled.clone();
    match ctrlc::set_handler(move || {
        // We've caught a ctrl-c, determine if it's the first time or an additional time.
        if caught_ctrlc.load(Ordering::SeqCst) {
            warn!("caught another ctrl-c, exiting immediately...");
            std::process::exit(1);
        }
        else {
            warn!("caught ctrl-c, stopping...");
            caught_ctrlc.store(true, Ordering::SeqCst);
        }
    }) {
        Ok(_) => (),
        Err(e) => {
            warn!("failed to set ctrl-c handler: {}", e);
        }
    }

    // Determine when to display running statistics (if enabled).
    let mut statistics_timer = time::Instant::now();
    let mut display_running_statistics = false;

    // Move into a local variable, actual run_time may be less due to SIGINT (ctrl-c).
    let mut run_time = goose_state.run_time;
    loop {
        // When displaying running statistics, sync data from client threads first.
        if goose_state.configuration.print_stats {
            // Synchronize statistics from client threads into parent.
            if timer_expired(statistics_timer, 15) {
                statistics_timer = time::Instant::now();
                for (index, send_to_client) in client_channels.iter().enumerate() {
                    send_to_client.send(GooseClientCommand::SYNC).unwrap();
                    debug!("telling client {} to sync stats", index);
                }
                if !goose_state.configuration.only_summary {
                    display_running_statistics = true;
                    // Give client threads time to send statstics.
                    let pause = time::Duration::from_millis(100);
                    thread::sleep(pause);
                }
            }

            // Load messages from client threads until the receiver queue is empty.
            let mut message = parent_receiver.try_recv();
            while message.is_ok() {
                // Messages contain per-client statistics: merge them into the global statistics.
                let unwrapped_message = message.unwrap();
                let weighted_clients_index = unwrapped_message.weighted_clients_index;
                goose_test.weighted_clients[weighted_clients_index].weighted_bucket = unwrapped_message.weighted_bucket;
                goose_test.weighted_clients[weighted_clients_index].weighted_bucket_position = unwrapped_message.weighted_bucket_position;
                goose_test.weighted_clients[weighted_clients_index].mode = unwrapped_message.mode;
                // If our local copy of the task set doesn't have tasks, clone them from the remote thread
                if goose_test.weighted_clients[weighted_clients_index].weighted_tasks.len() == 0 {
                    goose_test.weighted_clients[weighted_clients_index].weighted_clients_index = unwrapped_message.weighted_clients_index;
                    goose_test.weighted_clients[weighted_clients_index].weighted_tasks = unwrapped_message.weighted_tasks.clone();
                }
                // Syncronize client requests
                for (request_key, request) in unwrapped_message.requests {
                    trace!("request_key: {}", request_key);
                    let merged_request;
                    if let Some(parent_request) = goose_test.weighted_clients[weighted_clients_index].requests.get(&request_key) {
                        merged_request = merge_from_client(parent_request, &request, &goose_state.configuration);
                    }
                    else {
                        // First time seeing this request, simply insert it.
                        merged_request = request.clone();
                    }
                    goose_test.weighted_clients[weighted_clients_index].requests.insert(request_key.to_string(), merged_request);
                }
                message = parent_receiver.try_recv();
            }

            // Flush statistics collected prior to all client threads running
            if goose_state.configuration.reset_stats && !statistics_reset {
                info!("statistics reset...");
                for (client_index, client) in goose_test.weighted_clients.clone().iter().enumerate() {
                    let mut reset_client = client.clone();
                    // Start again with an empty requests hashmap.
                    reset_client.requests = HashMap::new();
                    goose_test.weighted_clients[client_index] = reset_client;
                }
                statistics_reset = true;
            }
        }

        if timer_expired(started, run_time) || canceled.load(Ordering::SeqCst) {
            run_time = started.elapsed().as_secs() as usize;
            info!("stopping after {} seconds...", run_time);
            for (index, send_to_client) in client_channels.iter().enumerate() {
                send_to_client.send(GooseClientCommand::EXIT).unwrap();
                debug!("telling client {} to sync stats", index);
            }
            info!("waiting for clients to exit");
            for client in clients {
                let _ = client.join();
            }
            debug!("all clients exited");

            // If we're printing statistics, collect the final messages received from clients
            if goose_state.configuration.print_stats {
                let mut message = parent_receiver.try_recv();
                while message.is_ok() {
                    let unwrapped_message = message.unwrap();
                    let weighted_clients_index = unwrapped_message.weighted_clients_index;
                    goose_test.weighted_clients[weighted_clients_index].mode = unwrapped_message.mode;
                    // Syncronize client requests
                    for (request_key, request) in unwrapped_message.requests {
                        trace!("request_key: {}", request_key);
                        let merged_request;
                        if let Some(parent_request) = goose_test.weighted_clients[weighted_clients_index].requests.get(&request_key) {
                            merged_request = merge_from_client(parent_request, &request, &goose_state.configuration);
                        }
                        else {
                            // First time seeing this request, simply insert it.
                            merged_request = request.clone();
                        }
                        goose_test.weighted_clients[weighted_clients_index].requests.insert(request_key.to_string(), merged_request);
                    }
                    message = parent_receiver.try_recv();
                }
            }

            // All clients are done, exit out of loop for final cleanup.
            break;
        }

        // If enabled, display running statistics after sync
        if display_running_statistics {
            display_running_statistics = false;
            stats::print_running_stats(&goose_state.configuration, &goose_test, started.elapsed().as_secs() as usize);
        }

        let one_second = time::Duration::from_secs(1);
        thread::sleep(one_second);
    }

    if goose_state.configuration.print_stats {
        stats::print_final_stats(&goose_state.configuration, &goose_test, started.elapsed().as_secs() as usize);
    }
}