1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
/*
* Licensed to Elasticsearch B.V. under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch B.V. licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*  http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied.  See the License for the
* specific language governing permissions and limitations
* under the License.
*/
use super::data_caches::*;
use super::layer::*;
use super::node::*;
use super::*;
use crate::plugins::TreePluginSet;
use crate::*;
use pbr::ProgressBar;
use std::cmp::{max, min};
use rand::rngs::SmallRng;
use rand::SeedableRng;
use std::fs::read_to_string;
use std::path::Path;
use std::sync::{atomic, Arc, RwLock};
use yaml_rust::YamlLoader;

use crossbeam_channel::{unbounded, Receiver, Sender};
use errors::GokoResult;

use std::time::Instant;

#[derive(Debug)]
struct BuilderNode {
    parent_address: Option<NodeAddress>,
    scale_index: i32,
    covered: CoveredData,
}

type NodeSplitResult<D> = GokoResult<(i32, usize, CoverNode<D>)>;

impl BuilderNode {
    fn new<D: PointCloud>(
        parameters: &CoverTreeParameters<D>,
        partition_type: PartitionType,
    ) -> GokoResult<BuilderNode> {
        let covered = match partition_type {
            PartitionType::Nearest => CoveredData::NearestCoveredData(
                NearestCoveredData::new::<D>(&parameters.point_cloud)?,
            ),
            PartitionType::First => {
                CoveredData::FirstCoveredData(FirstCoveredData::new::<D>(&parameters.point_cloud)?)
            }
        };
        let scale_index = (covered.max_distance()).log(parameters.scale_base).ceil() as i32;
        Ok(BuilderNode {
            parent_address: None,
            scale_index,
            covered,
        })
    }

    #[inline]
    fn address(&self) -> NodeAddress {
        (self.scale_index, self.covered.center_index())
    }

    fn split_parallel<D: PointCloud>(
        self,
        parameters: &Arc<CoverTreeParameters<D>>,
        node_sender: &Arc<Sender<NodeSplitResult<D>>>,
    ) {
        let parameters = Arc::clone(parameters);
        let node_sender = Arc::clone(node_sender);
        rayon::spawn(move || {
            let (si, pi) = self.address();
            match self.split(&parameters) {
                Ok((new_node, mut new_nodes)) => {
                    node_sender.send(Ok((si, pi, new_node))).unwrap();
                    while let Some(node) = new_nodes.pop() {
                        node.split_parallel(&parameters, &node_sender);
                    }
                }
                Err(e) => node_sender.send(Err(e)).unwrap(),
            };
        });
    }

    fn split<D: PointCloud>(
        self,
        parameters: &Arc<CoverTreeParameters<D>>,
    ) -> GokoResult<(CoverNode<D>, Vec<BuilderNode>)> {
        let scale_index = self.scale_index;
        let current_address = (scale_index, self.covered.center_index());
        let mut node = CoverNode::new(self.parent_address, current_address);
        let radius = self.covered.max_distance();
        node.set_radius(radius);
        /* Occasionally there's a small cluster split off of at a low min_res_index.
        This brings the scale-index down/min_res_index up quickly, locally.
        */
        let mut new_nodes = if self.covered.len() <= parameters.leaf_cutoff
            || scale_index < parameters.min_res_index
        {
            //println!("== This is getting cut down by parameters ==");
            node.insert_singletons(self.covered.into_indexes());
            vec![]
        } else {
            let next_scale_index = min(
                scale_index - 1,
                max(
                    radius.log(parameters.scale_base).ceil() as i32,
                    parameters.min_res_index,
                ),
            );
            match self.covered {
                CoveredData::FirstCoveredData(covered) => BuilderNode::split_first(
                    &mut node,
                    current_address,
                    covered,
                    next_scale_index,
                    parameters,
                )?,
                CoveredData::NearestCoveredData(covered) => BuilderNode::split_nearest(
                    &mut node,
                    current_address,
                    covered,
                    next_scale_index,
                    parameters,
                )?,
            }
        };

        if new_nodes.len() == 1 && new_nodes[0].covered.len() == 1 {
            node.remove_children();
            parameters
                .total_nodes
                .fetch_sub(1, atomic::Ordering::SeqCst);
            node.insert_singletons(new_nodes.pop().unwrap().covered.into_indexes());
        }

        // This node is done, send it in
        //println!("=====================");
        Ok((node, new_nodes))
    }

    fn split_nearest<D: PointCloud>(
        parent_node: &mut CoverNode<D>,
        parent_address: NodeAddress,
        covered: NearestCoveredData,
        split_scale_index: i32,
        parameters: &Arc<CoverTreeParameters<D>>,
    ) -> GokoResult<Vec<BuilderNode>> {
        let mut small_rng: SmallRng = match parameters.rng_seed {
            Some(seed) => SmallRng::seed_from_u64(seed ^ parent_address.1 as u64),
            None => SmallRng::from_entropy(),
        };
        let next_scale = parameters.scale_base.powi(split_scale_index);
        let (nested_potential, mut splits) = covered.split(next_scale, &parameters.point_cloud, &mut small_rng)?;
        let mut new_nodes = Vec::new();

        let mut inserts = Vec::new();

        for potential in splits.drain(0..) {
            if potential.len() == 1 && parameters.use_singletons {
                parent_node.insert_singleton(potential.center_index);
            } else {
                inserts.push(((split_scale_index, potential.center_index), potential.len()));

                let new_node = BuilderNode {
                    parent_address: Some(parent_address),
                    scale_index: split_scale_index,
                    covered: CoveredData::NearestCoveredData(potential),
                };
                new_nodes.push(new_node);
                parameters
                    .total_nodes
                    .fetch_add(1, atomic::Ordering::SeqCst);
            }
        }
        if !inserts.is_empty() || !(nested_potential.len() == 1 && parameters.use_singletons) {
            parent_node.insert_nested_child(split_scale_index, nested_potential.len())?;

            let new_node = BuilderNode {
                parent_address: Some(parent_address),
                scale_index: split_scale_index,
                covered: CoveredData::NearestCoveredData(nested_potential),
            };
            new_nodes.push(new_node);
            parameters
                .total_nodes
                .fetch_add(1, atomic::Ordering::SeqCst);

            for ((split_scale_index, potential_center_index), potential_len) in inserts {
                parent_node
                    .insert_child((split_scale_index, potential_center_index), potential_len)?;
            }
        }

        Ok(new_nodes)
    }

    fn split_first<D: PointCloud>(
        parent_node: &mut CoverNode<D>,
        parent_address: NodeAddress,
        covered: FirstCoveredData,
        split_scale_index: i32,
        parameters: &Arc<CoverTreeParameters<D>>,
    ) -> GokoResult<Vec<BuilderNode>> {
        let mut small_rng: SmallRng = match parameters.rng_seed {
            Some(seed) => SmallRng::seed_from_u64(seed ^ parent_address.1 as u64),
            None => SmallRng::from_entropy(),
        };
        let mut new_nodes = Vec::new();

        let next_scale = parameters.scale_base.powi(split_scale_index);

        /*
        We get a bunch of points (close) that are within `next_scale` of the center.
        we also get a bunch of points further out (new_fars). For these we need to find centers.
        */

        let (close, mut fars) = covered.split(next_scale).unwrap();
        //println!("== Split loop setup with scale {}, and scale index {} ==", next_scale, next_scale_index);
        //println!("\tCovered: {:?}", close);
        //println!("\tNot Covered: {:?}", fars);

        parent_node.insert_nested_child(split_scale_index, close.len())?;
        let new_node = BuilderNode {
            parent_address: Some(parent_address),
            scale_index: split_scale_index,
            covered: CoveredData::FirstCoveredData(close),
        };
        new_nodes.push(new_node);
        parameters
            .total_nodes
            .fetch_add(1, atomic::Ordering::SeqCst);
        /*
        First we make the covered child. This child has the same center as it's parent and it
        covers the points that are in the "close" set.
        */

        /*
        We have the core loop that makes new points. We check that the new_fars' exist (split
        returns None if there arn't any points more than next_scale from the center), then if
        it does we split it again.

        The DistCache is responsible for picking new centers each time there's a split (to
        ensure it always returns a valid DistCache).
        */

        while fars.len() > 0 {
            let new_close = fars.pick_center(next_scale, &parameters.point_cloud, &mut small_rng)?;
            //println!("\t\t [{}] New Covered: {:?}",split_count, new_close);
            if new_close.len() == 1 && parameters.use_singletons {
                /*
                We have a vast quantity of internal ourliers. These are singleton points that are
                at least next_scale away from each other. These could be fully fledged leaf nodes,
                or we can short circut them and just store a reference.

                On malware data 80% of the data are outliers of this type. References are a significant
                ram savings.
                */
                parent_node.insert_singleton(new_close.center_index);
            } else {
                parent_node
                    .insert_child((split_scale_index, new_close.center_index), new_close.len())?;
                let new_node = BuilderNode {
                    parent_address: Some(parent_address),
                    scale_index: split_scale_index,
                    covered: CoveredData::FirstCoveredData(new_close),
                };
                new_nodes.push(new_node);
                parameters
                    .total_nodes
                    .fetch_add(1, atomic::Ordering::SeqCst);
            }
        }

        Ok(new_nodes)
    }
}

/// A construction object for a covertree. See [`crate::covertree::tree::CoverTreeParameters`] for docs
#[derive(Debug)]
pub struct CoverTreeBuilder {
    pub(crate) scale_base: f32,
    pub(crate) leaf_cutoff: usize,
    pub(crate) min_res_index: i32,
    pub(crate) use_singletons: bool,
    pub(crate) partition_type: PartitionType,
    pub(crate) verbosity: u32,
    pub(crate) rng_seed: Option<u64>,
}

impl Default for CoverTreeBuilder {
    fn default() -> CoverTreeBuilder {
        CoverTreeBuilder {
            scale_base: 2.0,
            leaf_cutoff: 1,
            min_res_index: -10,
            use_singletons: true,
            partition_type: PartitionType::Nearest,
            verbosity: 0,
            rng_seed: None,
        }
    }
}

impl CoverTreeBuilder {
    /// Creates a new builder with sensible defaults.
    pub fn new() -> CoverTreeBuilder {
        CoverTreeBuilder {
            scale_base: 2.0,
            leaf_cutoff: 1,
            min_res_index: -10,
            use_singletons: true,
            partition_type: PartitionType::Nearest,
            verbosity: 0,
            rng_seed: None,
        }
    }

    /// Creates a builder from an open yaml object
    pub fn from_yaml<P: AsRef<Path>>(path: P) -> Self {
        let config = read_to_string(&path).expect("Unable to read config file");
        let params_files = YamlLoader::load_from_str(&config).unwrap();
        let params = &params_files[0];
        let partition_type = if "first" == params["partition_type"].as_str().unwrap_or("nearest") {
            PartitionType::First
        } else {
            PartitionType::Nearest
        };
        CoverTreeBuilder {
            scale_base: params["scale_base"].as_f64().unwrap_or(2.0) as f32,
            leaf_cutoff: params["leaf_cutoff"].as_i64().unwrap_or(1) as usize,
            min_res_index: params["min_res_index"].as_i64().unwrap_or(-10) as i32,
            use_singletons: params["use_singletons"].as_bool().unwrap_or(true),
            partition_type,
            verbosity: params["verbosity"].as_i64().unwrap_or(2) as u32,
            rng_seed: params["verbosity"].as_i64().map(|i| i as u64),
        }
    }

    /// See [`crate::covertree::tree::CoverTreeParameters`] for docs
    pub fn set_scale_base(&mut self, x: f32) -> &mut Self {
        self.scale_base = x;
        self
    }
    /// See [`crate::covertree::tree::CoverTreeParameters`] for docs
    pub fn set_leaf_cutoff(&mut self, x: usize) -> &mut Self {
        self.leaf_cutoff = x;
        self
    }
    /// See [`crate::covertree::tree::CoverTreeParameters`] for docs
    pub fn set_min_res_index(&mut self, x: i32) -> &mut Self {
        self.min_res_index = x;
        self
    }
    /// See [`crate::covertree::tree::CoverTreeParameters`] for docs
    pub fn set_use_singletons(&mut self, x: bool) -> &mut Self {
        self.use_singletons = x;
        self
    }
    /// See [`crate::covertree::tree::CoverTreeParameters`] for docs
    pub fn set_verbosity(&mut self, x: u32) -> &mut Self {
        self.verbosity = x;
        self
    }
    /// See [`crate::covertree::tree::CoverTreeParameters`] for docs
    pub fn set_rng_seed(&mut self, x: u64) -> &mut Self {
        self.rng_seed = Some(x);
        self
    }
    /// Pass a point cloud object when ready.
    /// To do, make this point cloud an Arc
    pub fn build<D: PointCloud>(&self, point_cloud: Arc<D>) -> GokoResult<CoverTreeWriter<D>> {
        let parameters = CoverTreeParameters {
            total_nodes: atomic::AtomicUsize::new(1),
            scale_base: self.scale_base,
            leaf_cutoff: self.leaf_cutoff,
            min_res_index: self.min_res_index,
            use_singletons: self.use_singletons,
            partition_type: self.partition_type,
            point_cloud,
            verbosity: self.verbosity,
            rng_seed: self.rng_seed,
            plugins: RwLock::new(TreePluginSet::new()),
        };

        let root = BuilderNode::new(&parameters, self.partition_type)?;
        let root_address = root.address();
        let scale_range = root_address.0 - parameters.min_res_index;
        let mut layers = Vec::with_capacity(scale_range as usize);
        layers.push(CoverLayerWriter::new(parameters.min_res_index - 1));
        for i in 0..(scale_range + 1) {
            layers.push(CoverLayerWriter::new(parameters.min_res_index + i as i32));
        }

        let (node_sender, node_receiver): (
            Sender<NodeSplitResult<D>>,
            Receiver<NodeSplitResult<D>>,
        ) = unbounded();

        let node_sender = Arc::new(node_sender);
        let parameters = Arc::new(parameters);
        root.split_parallel(&parameters, &node_sender);
        let mut pb = ProgressBar::new(1u64);
        if parameters.verbosity > 1 {
            pb.format("╢▌▌░╟");
        }

        let (_final_addresses_reader, final_addresses) = monomap::new();

        let mut cover_tree = CoverTreeWriter {
            parameters: Arc::clone(&parameters),
            layers,
            root_address,
            final_addresses,
        };

        let mut inserted_nodes: usize = 0;
        let now = Instant::now();
        loop {
            if let Ok(res) = node_receiver.recv() {
                let (scale_index, point_index, new_node) = res.unwrap();
                for singleton in new_node.singletons() {
                    cover_tree
                        .final_addresses
                        .insert(*singleton, (scale_index, point_index));
                }
                if new_node.is_leaf() {
                    cover_tree
                        .final_addresses
                        .insert(point_index, (scale_index, point_index));
                }
                unsafe {
                    cover_tree.insert_raw(scale_index, point_index, new_node);
                }
                inserted_nodes += 1;
                if parameters.verbosity > 1 {
                    pb.total = parameters.total_nodes.load(atomic::Ordering::SeqCst) as u64;
                    pb.inc();
                }
            }
            // Stop if there are enough done, and there are no more outstanding parameter references
            if inserted_nodes == parameters.total_nodes.load(atomic::Ordering::SeqCst) {
                break;
            }
        }
        if parameters.verbosity > 1 {
            println!("\nWriting layers...");
        }
        cover_tree.refresh();
        cover_tree.final_addresses.refresh();
        cover_tree.final_addresses.refresh();
        if parameters.verbosity > 1 {
            println!(
                "Finished building, took {:?} with {} per second",
                now.elapsed(),
                (inserted_nodes as f32) / now.elapsed().as_secs_f32()
            );
        }
        Ok(cover_tree)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::{thread, time};

    pub fn create_test_parameters(
        data: Vec<f32>,
        data_dim: usize,
    ) -> Arc<CoverTreeParameters<DefaultCloud<L2>>> {
        let point_cloud = Arc::new(DefaultCloud::<L2>::new(data, data_dim).unwrap());
        Arc::new(CoverTreeParameters {
            total_nodes: atomic::AtomicUsize::new(1),
            scale_base: 2.0,
            leaf_cutoff: 0,
            min_res_index: -9,
            use_singletons: true,
            partition_type: PartitionType::Nearest,
            point_cloud,
            verbosity: 0,
            rng_seed: Some(0),
            plugins: RwLock::new(TreePluginSet::new()),
        })
    }

    #[test]
    fn nearest_splits_conditions() {
        let mut data = Vec::with_capacity(20);
        for _i in 0..19 {
            data.push(rand::random::<f32>());
        }
        data.push(0.0);

        let test_parameters = create_test_parameters(data, 1);
        let build_node = BuilderNode::new(&test_parameters, PartitionType::Nearest).unwrap();
        let (scale_index, center_index) = build_node.address();

        println!("{:?}", build_node);
        println!(
            "The center_index for the covered data should be 19 but is {}",
            build_node.covered.center_index()
        );
        assert!(center_index == 19);
        println!("The scale_index should be 0, but is {}", scale_index);
        assert!(scale_index == 0);

        let (new_node, unfinished_nodes) = build_node.split(&test_parameters).unwrap();
        println!("New Node: {:#?}", new_node);
        let split_count = test_parameters.total_nodes.load(atomic::Ordering::SeqCst) - 1;
        println!(
            "We should have split count be equal to the work count: split {} , work {}",
            split_count,
            unfinished_nodes.len()
        );
        println!("We shouldn't be a leaf: {}", new_node.is_leaf());
        assert!(!new_node.is_leaf());
        println!(
            "We should have children count be equal to the split count: {}",
            new_node.children_len()
        );
        assert!(new_node.children_len() == split_count);
    }

    #[test]
    fn first_splits_conditions() {
        let mut data = Vec::with_capacity(20);
        for _i in 0..19 {
            data.push(rand::random::<f32>());
        }
        data.push(0.0);

        let test_parameters = create_test_parameters(data, 1);
        let build_node = BuilderNode::new(&test_parameters, PartitionType::First).unwrap();
        let (scale_index, center_index) = build_node.address();

        println!("{:?}", build_node);
        println!(
            "The center_index for the covered data should be 19 but is {}",
            build_node.covered.center_index()
        );
        assert!(center_index == 19);
        println!("The scale_index should be 0, but is {}", scale_index);
        assert!(scale_index == 0);

        let (new_node, unfinished_nodes) = build_node.split(&test_parameters).unwrap();
        let split_count = test_parameters.total_nodes.load(atomic::Ordering::SeqCst) - 1;
        println!(
            "We should have split count be equal to the work count: split {} , work {}",
            split_count,
            unfinished_nodes.len()
        );
        println!("We shouldn't be a leaf: {}", new_node.is_leaf());
        assert!(!new_node.is_leaf());
        println!(
            "We should have children count be equal to the split count: {}",
            new_node.children_len()
        );
        assert!(new_node.children_len() == split_count);
    }

    #[test]
    fn tree_first_structure_condition() {
        let data = vec![0.49, 0.491, -0.49, 0.0];
        let test_parameters = create_test_parameters(data, 1);

        let build_node = BuilderNode::new(&test_parameters, PartitionType::First).unwrap();

        let (node_sender, node_receiver): (
            Sender<GokoResult<(i32, usize, CoverNode<DefaultCloud<L2>>)>>,
            Receiver<GokoResult<(i32, usize, CoverNode<DefaultCloud<L2>>)>>,
        ) = unbounded();
        let node_sender = Arc::new(node_sender);

        build_node.split_parallel(&test_parameters, &node_sender);
        thread::sleep(time::Duration::from_millis(100));
        let split_count = test_parameters.total_nodes.load(atomic::Ordering::SeqCst) - 1;
        println!(
            "Split count {}, node_receiver {}",
            split_count,
            node_receiver.len()
        );
        assert!(split_count + 1 == node_receiver.len());
        assert!(split_count == 3);
        while let Ok(pat) = node_receiver.try_recv() {
            let (scale_index, center_index, node) = pat.unwrap();
            println!("{:?}", node);
            match (scale_index, center_index) {
                (-1, 3) => assert!(!node.is_leaf()),
                (-2, 3) => assert!(node.is_leaf()),
                (-2, 2) => assert!(node.is_leaf()),
                (-2, 0) => assert!(!node.is_leaf()),
                (-2, 1) => assert!(!node.is_leaf()),
                _ => {}
            };
        }
    }

    #[test]
    fn tree_nearest_structure_condition() {
        let data = vec![0.49, 0.491, -0.49, 0.0];
        let test_parameters = create_test_parameters(data, 1);

        let build_node = BuilderNode::new(&test_parameters, PartitionType::Nearest).unwrap();

        let (node_sender, node_receiver): (
            Sender<GokoResult<(i32, usize, CoverNode<DefaultCloud<L2>>)>>,
            Receiver<GokoResult<(i32, usize, CoverNode<DefaultCloud<L2>>)>>,
        ) = unbounded();
        let node_sender = Arc::new(node_sender);

        build_node.split_parallel(&test_parameters, &node_sender);
        thread::sleep(time::Duration::from_millis(100));
        let split_count = test_parameters.total_nodes.load(atomic::Ordering::SeqCst) - 1;
        println!(
            "Split count {}, node_receiver {}",
            split_count,
            node_receiver.len()
        );
        assert!(split_count + 1 == node_receiver.len());
        assert!(split_count == 3);
        while let Ok(pat) = node_receiver.try_recv() {
            let (scale_index, center_index, node) = pat.unwrap();
            println!("{:?}", node);

            match (scale_index, center_index) {
                (-1, 3) => assert!(!node.is_leaf()),
                (-2, 3) => assert!(node.is_leaf()),
                (-2, 2) => assert!(node.is_leaf()),
                (-2, 0) => assert!(!node.is_leaf()),
                (-2, 1) => assert!(!node.is_leaf()),
                _ => {}
            };
        }
    }

    #[test]
    fn insertion_tree_structure_condition() {
        let data = vec![0.49, 0.491, -0.49, 0.0];

        let point_cloud = Arc::new(DefaultCloud::<L2>::new(data, 1).unwrap());
        let builder = CoverTreeBuilder {
            scale_base: 2.0,
            leaf_cutoff: 1,
            min_res_index: -9,
            use_singletons: true,
            verbosity: 0,
            partition_type: PartitionType::First,
            rng_seed: Some(0),
        };
        let tree = builder.build(point_cloud).unwrap();
        let reader = tree.reader();

        println!("Testing top layer");
        let top_layer = reader.layer(-1);
        println!("Should only be one node");
        assert!(top_layer.len() == 1);
        println!("The root should not be a leaf");
        assert!(reader.get_node_and((-1, 3), |n| !n.is_leaf()).unwrap());
        println!("The root should have children");
        assert!(reader
            .get_node_and((-1, 3), |n| n.children().is_some())
            .unwrap());

        println!("Testing Mid Layer");
        let mid_layer = reader.layer(-2);
        println!("Should have 2 nodes");
        assert!(mid_layer.len() == 2);
        println!("Nested child of root should leafify");
        assert!(reader.get_node_and((-2, 3), |n| n.is_leaf()).unwrap());
        println!("Nested child of root should not have any children");
        assert!(reader
            .get_node_and((-2, 3), |n| n.children().is_none())
            .unwrap());
        println!("-0.49 is a singleton that shouldn't be here.");
        assert!(reader.get_node_and((-2, 2), |n| n.is_leaf()).is_none());
        assert!(reader.no_dangling_refs());
    }

    #[test]
    fn singleltons_off_condition() {
        let data = vec![0.49, 0.491, -0.49, 0.0];

        let point_cloud = Arc::new(DefaultCloud::<L2>::new(data, 1).unwrap());

        let builder = CoverTreeBuilder {
            scale_base: 2.0,
            leaf_cutoff: 1,
            min_res_index: -9,
            use_singletons: false,
            verbosity: 0,
            partition_type: PartitionType::First,
            rng_seed: Some(0),
        };
        let tree = builder.build(point_cloud).unwrap();
        let reader = tree.reader();

        println!("-0.49 is a singleton that should be here.");
        assert!(reader.get_node_and((-2, 2), |n| n.is_leaf()).is_some());
        assert!(reader.no_dangling_refs());
    }
}