1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! HMAC is specified in [RFC 2104].
//!
//! After a `SigningKey` or `VerificationKey` is constructed, it can be used
//! for multiple signing or verification operations. Separating the
//! construction of the key from the rest of the HMAC operation allows the
//! per-key precomputation to be done only once, instead of it being done in
//! every HMAC operation.
//!
//! Frequently all the data to be signed in a message is available in a single
//! contiguous piece. In that case, the module-level `sign` function can be
//! used. Otherwise, if the input is in multiple parts, `SigningContext` should
//! be used.
//!
//! # Use Case: Multi-party Communication
//!
//! Examples: TLS, SSH, and IPSEC record/packet authentication.
//!
//! The key that is used to sign messages to send to other parties should be a
//! `SigningKey`; `SigningContext` or `sign` should be used for the signing.
//! Each key that is used to authenticate messages received from peers should
//! be a `VerificationKey`; `verify` should be used for the authentication. All
//! of the keys should have distinct, independent, values.
//!
//! # Use Case: One-party Anti-tampering Protection
//!
//! Examples: Signed cookies, stateless CSRF protection.
//!
//! The key that is used to sign the data should be a `SigningKey`;
//! `SigningContext` or `sign` should be used for the signing. Use
//! `verify_with_own_key` to verify the signature using the signing key; this
//! is equivalent to, but more efficient than, constructing a `VerificationKey`
//! with the same value as the signing key and then calling `verify`.
//!
//! # Use Case: Key Derivation and Password Hashing
//!
//! Examples: HKDF, PBKDF2, the TLS PRF.
//!
//! All keys used during the key derivation should be `SigningKey`s;
//! `SigningContext` should usually be used for the HMAC calculations. The
//! [code for `ring::pbkdf2`] and the [code for `ring::hkdf`] are good
//! examples of how to use `ring::hmac` efficiently for key derivation.
//!
//!
//! # Examples:
//!
//! ## Signing a value and verifying it wasn't tampered with
//!
//! ```
//! use ring::{digest, hmac, rand};
//!
//! # fn main_with_result() -> Result<(), ring::error::Unspecified> {
//! let rng = rand::SystemRandom::new();
//! let key = hmac::SigningKey::generate(&digest::SHA256, &rng)?;
//!
//! let msg = "hello, world";
//!
//! let signature = hmac::sign(&key, msg.as_bytes());
//!
//! // [We give access to the message to an untrusted party, and they give it
//! // back to us. We need to verify they didn't tamper with it.]
//!
//! hmac::verify_with_own_key(&key, msg.as_bytes(), signature.as_ref())?;
//! #
//! # Ok(())
//! # }
//! #
//! # fn main() { main_with_result().unwrap() }
//! ```
//!
//! ## Using the one-shot API:
//!
//! ```
//! use ring::{digest, hmac, rand};
//! use ring::rand::SecureRandom;
//!
//! # fn main_with_result() -> Result<(), ring::error::Unspecified> {
//! let msg = "hello, world";
//!
//! // The sender generates a secure key value and signs the message with it.
//! // Note that in a real protocol, a key agreement protocol would be used to
//! // derive `key_value`.
//! let mut key_value = [0u8; 32];
//! let rng = rand::SystemRandom::new();
//! rng.fill(&mut key_value)?;
//!
//! let s_key = hmac::SigningKey::new(&digest::SHA256, key_value.as_ref());
//! let signature = hmac::sign(&s_key, msg.as_bytes());
//!
//! // The receiver (somehow!) knows the key value, and uses it to verify the
//! // integrity of the message.
//! let v_key = hmac::VerificationKey::new(&digest::SHA256, key_value.as_ref());
//! hmac::verify(&v_key, msg.as_bytes(), signature.as_ref())?;
//! #
//! # Ok(())
//! # }
//! #
//! # fn main() { main_with_result().unwrap() }
//! ```
//!
//! ## Using the multi-part API:
//! ```
//! use ring::{digest, hmac, rand};
//! use ring::rand::SecureRandom;
//!
//! # fn main_with_result() -> Result<(), ring::error::Unspecified> {
//! let parts = ["hello", ", ", "world"];
//!
//! // The sender generates a secure key value and signs the message with it.
//! // Note that in a real protocol, a key agreement protocol would be used to
//! // derive `key_value`.
//! let mut key_value = [0u8; 48];
//! let rng = rand::SystemRandom::new();
//! rng.fill(&mut key_value)?;
//!
//! let s_key = hmac::SigningKey::new(&digest::SHA384, key_value.as_ref());
//! let mut s_ctx = hmac::SigningContext::with_key(&s_key);
//! for part in &parts {
//!     s_ctx.update(part.as_bytes());
//! }
//! let signature = s_ctx.sign();
//!
//! // The receiver (somehow!) knows the key value, and uses it to verify the
//! // integrity of the message.
//! let v_key = hmac::VerificationKey::new(&digest::SHA384, key_value.as_ref());
//! let mut msg = Vec::<u8>::new();
//! for part in &parts {
//!     msg.extend(part.as_bytes());
//! }
//! hmac::verify(&v_key, &msg.as_ref(), signature.as_ref())?;
//! #
//! # Ok(())
//! # }
//! #
//! # fn main() { main_with_result().unwrap() }
//! ```
//!
//! [RFC 2104]: https://tools.ietf.org/html/rfc2104
//! [code for `ring::pbkdf2`]:
//!     https://github.com/briansmith/ring/blob/master/src/pbkdf2.rs
//! [code for `ring::hkdf`]:
//!     https://github.com/briansmith/ring/blob/master/src/hkdf.rs


use {constant_time, digest, error, rand};

/// An HMAC signature.
///
/// For a given signature `s`, use `s.as_ref()` to get the signature value as
/// a byte slice.
#[derive(Clone, Copy, Debug)]
pub struct Signature(digest::Digest);

/// A key to use for HMAC signing.
pub struct SigningKey {
    ctx_prototype: SigningContext,
}

impl AsRef<[u8]> for Signature {
    #[inline] fn as_ref(&self) -> &[u8] { self.0.as_ref() }
}

impl SigningKey {
    /// Generate an HMAC signing key using the given digest algorithm with a
    /// random value generated from `rng`.
    ///
    /// The key will be `recommended_key_len(digest_alg)` bytes long.
    pub fn generate(digest_alg: &'static digest::Algorithm,
                    rng: &rand::SecureRandom)
                    -> Result<SigningKey, error::Unspecified> {
        // XXX: There should probably be a `digest::MAX_CHAINING_LEN`, but for
        // now `digest::MAX_OUTPUT_LEN` is good enough.
        let mut key_bytes = [0u8; digest::MAX_OUTPUT_LEN];
        let key_bytes = &mut key_bytes[..recommended_key_len(digest_alg)];
        Self::generate_serializable(digest_alg, rng, key_bytes)
    }

    /// Generate an HMAC signing key using the given digest algorithm with a
    /// random value generated from `rng`, and puts the raw key value in
    /// `key_bytes`.
    ///
    /// The key will be `recommended_key_len(digest_alg)` bytes long. The raw
    /// value of the random key is put in `key_bytes` so that it can be
    /// serialized for later use, so `key_bytes` must be exactly
    /// `recommended_key_len(digest_alg)`. This serialized value can be
    /// deserialized with `SigningKey::new()`.
    pub fn generate_serializable(digest_alg: &'static digest::Algorithm,
                                 rng: &rand::SecureRandom, key_bytes: &mut [u8])
                    -> Result<SigningKey, error::Unspecified> {
        if key_bytes.len() != recommended_key_len(digest_alg) {
            return Err(error::Unspecified);
        }
        rng.fill(key_bytes)?;
        Ok(SigningKey::new(digest_alg, key_bytes))
    }

    /// Construct an HMAC signing key using the given digest algorithm and key
    /// value.
    ///
    /// `key_value` should be a value generated using a secure random number
    /// generator (e.g. the `key_value` output by
    /// `SealingKey::generate_serializable()`) or derived from a random key by
    /// a key derivation function (e.g. `ring::hkdf`). In particular,
    /// `key_value` shouldn't be a password.
    ///
    /// As specified in RFC 2104, if `key_value` is shorter than the digest
    /// algorithm's block length (as returned by `digest::Algorithm::block_len`,
    /// not the digest length returned by `digest::Algorithm::output_len`) then
    /// it will be padded with zeros. Similarly, if it is longer than the block
    /// length then it will be compressed using the digest algorithm.
    ///
    /// You should not use keys larger than the `digest_alg.block_len` because
    /// the truncation described above reduces their strength to only
    /// `digest_alg.output_len * 8` bits. Support for such keys is likely to be
    /// removed in a future version of *ring*.
    pub fn new(digest_alg: &'static digest::Algorithm, key_value: &[u8])
               -> SigningKey {
        let mut key = SigningKey {
            ctx_prototype: SigningContext {
                inner: digest::Context::new(digest_alg),
                outer: digest::Context::new(digest_alg),
            },
        };

        let key_hash;
        let key_value = if key_value.len() <= digest_alg.block_len {
            key_value
        } else {
            key_hash = digest::digest(digest_alg, key_value);
            key_hash.as_ref()
        };

        const IPAD: u8 = 0x36;
        const OPAD: u8 = 0x5C;

        for b in key_value {
            key.ctx_prototype.inner.update(&[IPAD ^ b]);
            key.ctx_prototype.outer.update(&[OPAD ^ b]);
        }

        // If the key is shorter than one block then act as though the key is
        // padded with zeros.
        for _ in key_value.len()..digest_alg.block_len {
            key.ctx_prototype.inner.update(&[IPAD]);
            key.ctx_prototype.outer.update(&[OPAD]);
        }

        key
    }

    /// The digest algorithm for the key.
    pub fn digest_algorithm(&self) -> &'static digest::Algorithm {
        self.ctx_prototype.inner.algorithm()
    }
}

/// A context for multi-step (Init-Update-Finish) HMAC signing.
///
/// Use `sign` for single-step HMAC signing.
///
/// C analog: `HMAC_CTX`.
#[derive(Clone)]
pub struct SigningContext {
    inner: digest::Context,
    outer: digest::Context,
}

impl SigningContext {
    /// Constructs a new HMAC signing context using the given digest algorithm
    /// and key.
    ///
    /// C analog: `HMAC_CTX_init`
    pub fn with_key(signing_key: &SigningKey) -> SigningContext {
        SigningContext {
            inner: signing_key.ctx_prototype.inner.clone(),
            outer: signing_key.ctx_prototype.outer.clone(),
        }
    }

    /// Updates the HMAC with all the data in `data`. `update` may be called
    /// zero or more times until `finish` is called.
    ///
    /// C analog: `HMAC_Update`
    pub fn update(&mut self, data: &[u8]) { self.inner.update(data); }

    /// Finalizes the HMAC calculation and returns the HMAC value. `sign`
    /// consumes the context so it cannot be (mis-)used after `sign` has been
    /// called.
    ///
    /// It is generally not safe to implement HMAC verification by comparing
    // the return value of `sign` to a signature. Use `verify` for verification
    // instead.
    ///
    /// C analog: `HMAC_Final`
    pub fn sign(mut self) -> Signature {
        self.outer.update(self.inner.finish().as_ref());
        Signature(self.outer.finish())
    }
}

/// Calculates the HMAC of `data` using the key `key` in one step.
///
/// Use `SigningContext` to calculate HMACs where the input is in multiple
/// parts.
///
/// It is generally not safe to implement HMAC verification by comparing the
/// return value of `sign` to a signature. Use `verify` for verification
/// instead.
///
/// C analog: `HMAC_CTX_init` + `HMAC_Update` + `HMAC_Final`.
pub fn sign(key: &SigningKey, data: &[u8]) -> Signature {
    let mut ctx = SigningContext::with_key(key);
    ctx.update(data);
    ctx.sign()
}

/// A key to use for HMAC authentication.
pub struct VerificationKey {
    wrapped: SigningKey,
}

impl VerificationKey {
    /// Construct an HMAC verification key using the given digest algorithm and
    /// key value.
    ///
    /// As specified in RFC 2104, if `key_value` is shorter than the digest
    /// algorithm's block length (as returned by `digest::Algorithm::block_len`,
    /// not the digest length returned by `digest::Algorithm::output_len`) then
    /// it will be padded with zeros. Similarly, if it is longer than the block
    /// length then it will be compressed using the digest algorithm.
    #[inline(always)]
    pub fn new(digest_alg: &'static digest::Algorithm, key_value: &[u8])
               -> VerificationKey {
        VerificationKey { wrapped: SigningKey::new(digest_alg, key_value) }
    }
}

/// Calculates the HMAC of `data` using the key `key`, and verifies whether the
/// resultant value equals `signature`, in one step.
///
/// The verification will be done in constant time to prevent timing attacks.
///
/// C analog: `HMAC_Init` + `HMAC_Update` + `HMAC_Final` + `CRYPTO_memcmp`
#[inline(always)]
pub fn verify(key: &VerificationKey, data: &[u8], signature: &[u8])
              -> Result<(), error::Unspecified> {
    verify_with_own_key(&key.wrapped, data, signature)
}

/// Calculates the HMAC of `data` using the signing key `key`, and verifies
/// whether the resultant value equals `signature`, in one step.
///
/// This is logically equivalent to, but more efficient than, constructing a
/// `VerificationKey` with the same value as `key` and then using `verify`.
///
/// The verification will be done in constant time to prevent timing attacks.
///
/// C analog: `HMAC_Init` + `HMAC_Update` + `HMAC_Final` + `CRYPTO_memcmp`
pub fn verify_with_own_key(key: &SigningKey, data: &[u8], signature: &[u8])
                           -> Result<(), error::Unspecified> {
    constant_time::verify_slices_are_equal(sign(key, data).as_ref(), signature)
}

/// Returns the recommended key length for HMAC using the given digest
/// algorithm.
///
/// The value returned is the chaining length of the digest function,
/// `digest_alg.chaining_len`. This is 32 bytes (256 bits) for SHA-256, and
/// 64 bytes (512 bits) for SHA-384 and SHA-512.
///
/// This recommendation is based on [NIST SP 800-107], Section 5.3.4: Security
/// Effect of the HMAC Key. The chaining length of the digest algorithm,
/// instead of its block length, is used to be consistent with the key lengths
/// chosen for TLS for SHA-256 (see [RFC 5246, Appendix C]) and most other
/// protocols.
///
/// [NIST SP 800-107]:
///     http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-107r1.pdf
/// [RFC 5246, Appendix C]:
///     https://tools.ietf.org/html/rfc5246#appendix-C
#[inline]
pub fn recommended_key_len(digest_alg: &digest::Algorithm) -> usize {
    digest_alg.chaining_len
}


#[cfg(test)]
mod tests {
    use {digest, hmac, rand, test};

    // Make sure that `SigningKey::generate` and `verify_with_own_key` aren't
    // completely wacky.
    #[test]
    pub fn hmac_signing_key_coverage() {
        let mut rng = rand::SystemRandom::new();

        const HELLO_WORLD_GOOD: &'static [u8] = b"hello, world";
        const HELLO_WORLD_BAD: &'static [u8] = b"hello, worle";

        for d in &digest::test_util::ALL_ALGORITHMS {
            {
                let key = hmac::SigningKey::generate(d, &mut rng).unwrap();
                let signature = hmac::sign(&key, HELLO_WORLD_GOOD);
                assert!(hmac::verify_with_own_key(&key, HELLO_WORLD_GOOD,
                                                  signature.as_ref()).is_ok());
                assert!(hmac::verify_with_own_key(&key, HELLO_WORLD_BAD,
                                                  signature.as_ref()).is_err())
            }

            {
                let mut key_bytes = vec![0; d.chaining_len];
                let key =
                    hmac::SigningKey::generate_serializable(d, &mut rng,
                                                            &mut key_bytes)
                            .unwrap();
                let signature = hmac::sign(&key, HELLO_WORLD_GOOD);
                assert!(hmac::verify_with_own_key(&key, HELLO_WORLD_GOOD,
                                                  signature.as_ref()).is_ok());
                assert!(hmac::verify_with_own_key(&key, HELLO_WORLD_BAD,
                                                  signature.as_ref()).is_err())
            }

            // Attempt with a `key_bytes` parameter that wrongly uses the
            // output length instead of the chaining length, when those two
            // values differ.
            if d.chaining_len != d.output_len {
                let mut key_bytes = vec![0; d.output_len];
                assert!(hmac::SigningKey::generate_serializable(d, &mut rng,
                                                                &mut key_bytes)
                            .is_err());
            }

            // Attempt with a too-small `key_bytes`.
            {
                let mut key_bytes = vec![0; d.chaining_len - 1];
                assert!(hmac::SigningKey::generate_serializable(d, &mut rng,
                                                                &mut key_bytes)
                            .is_err());
            }

            // Attempt with a too-large `key_bytes`.
            {
                let mut key_bytes = vec![0; d.chaining_len + 1];
                assert!(hmac::SigningKey::generate_serializable(d, &mut rng,
                                                                &mut key_bytes)
                            .is_err());
            }
        }
    }

    // Test that `generate_serializable()` generates a key from the RNG, and
    // that the generated key fills the entire `key_bytes` parameter.
    #[test]
    pub fn generate_serializable_tests() {
        test::from_file("src/hmac_generate_serializable_tests.txt",
                        |section, test_case| {
            assert_eq!(section, "");
            let digest_alg = test_case.consume_digest_alg("HMAC").unwrap();
            let key_value_in = test_case.consume_bytes("Key");

            let rng = test::rand::FixedSliceRandom { bytes: &key_value_in };
            let mut key_value_out = vec![0; digest_alg.chaining_len];
            let _ = hmac::SigningKey::generate_serializable(
                    digest_alg, &rng, &mut key_value_out).unwrap();
            assert_eq!(&key_value_in, &key_value_out);

            Ok(())
        })
    }
}