1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Authenticated Encryption with Associated Data (AEAD).
//!
//! See [Authenticated encryption: relations among notions and analysis of the
//! generic composition paradigm][AEAD] for an introduction to the concept of
//! AEADs.
//!
//! C analog: `GFp/aead.h`
//!
//! Go analog: [`crypto.cipher.AEAD`]
//!
//! [AEAD]: http://www-cse.ucsd.edu/~mihir/papers/oem.html
//! [`crypto.cipher.AEAD`]: https://golang.org/pkg/crypto/cipher/#AEAD

pub mod chacha20_poly1305_openssh;

mod chacha20_poly1305;
mod aes_gcm;

use {constant_time, error, init, poly1305, polyfill};

pub use self::chacha20_poly1305::CHACHA20_POLY1305;
pub use self::aes_gcm::{AES_128_GCM, AES_256_GCM};

/// A key for authenticating and decrypting (“opening”) AEAD-protected data.
///
/// C analog: `EVP_AEAD_CTX` with direction `evp_aead_open`
///
/// Go analog: [`crypto.cipher.AEAD`]
pub struct OpeningKey {
    key: Key,
}

impl OpeningKey {
    /// Create a new opening key.
    ///
    /// `key_bytes` must be exactly `algorithm.key_len` bytes long.
    ///
    /// C analogs: `EVP_AEAD_CTX_init_with_direction` with direction
    ///            `evp_aead_open`, `EVP_AEAD_CTX_init`.
    ///
    /// Go analog:
    ///   [`crypto.aes.NewCipher`](https://golang.org/pkg/crypto/aes/#NewCipher)
    /// + [`crypto.cipher.NewGCM`](https://golang.org/pkg/crypto/cipher/#NewGCM)
    #[inline]
    pub fn new(algorithm: &'static Algorithm, key_bytes: &[u8])
               -> Result<OpeningKey, error::Unspecified> {
        let mut key = OpeningKey {
            key: Key {
                algorithm: algorithm,
                ctx_buf: [0; KEY_CTX_BUF_ELEMS],
            },
        };
        key.key.init(key_bytes)?;
        Ok(key)
    }

    /// The key's AEAD algorithm.
    ///
    /// C analog: `EVP_AEAD_CTX.aead`
    #[inline(always)]
    pub fn algorithm(&self) -> &'static Algorithm { self.key.algorithm() }
}

/// Authenticates and decrypts (“opens”) data in place. When
///
/// The input may have a prefix that is `in_prefix_len` bytes long; any such
/// prefix is ignored on input and overwritten on output. The last
/// `key.algorithm().tag_len()` bytes of `ciphertext_and_tag_modified_in_place`
/// must be the tag. The part of `ciphertext_and_tag_modified_in_place` between
/// the prefix and the tag is the input ciphertext.
///
/// When `open_in_place()` returns `Ok(plaintext)`, the decrypted output is
/// `plaintext`, which is
/// `&mut ciphertext_and_tag_modified_in_place[..plaintext.len()]`. That is,
/// the output plaintext overwrites some or all of the prefix and ciphertext.
/// To put it another way, the ciphertext is shifted forward `in_prefix_len`
/// bytes and then decrypted in place. To have the output overwrite the input
/// without shifting, pass 0 as `in_prefix_len`.
///
/// When `open_in_place()` returns `Err(..)`,
/// `ciphertext_and_tag_modified_in_place` may have been overwritten in an
/// unspecified way.
///
/// The shifting feature is useful in the case where multiple packets are
/// being reassembled in place. Consider this example where the peer has sent
/// the message “Split stream reassembled in place” split into three sealed
/// packets:
///
/// ```ascii-art
///                 Packet 1                  Packet 2                 Packet 3
/// Input:  [Header][Ciphertext][Tag][Header][Ciphertext][Tag][Header][Ciphertext][Tag]
///                      |         +--------------+                        |
///               +------+   +-----+    +----------------------------------+
///               v          v          v
/// Output: [Plaintext][Plaintext][Plaintext]
///        “Split stream reassembled in place”
/// ```
///
/// Let's say the header is always 5 bytes (like TLS 1.2) and the tag is always
/// 16 bytes (as for AES-GCM and ChaCha20-Poly1305). Then for this example,
/// `in_prefix_len` would be `5` for the first packet, `(5 + 16) + 5` for the
/// second packet, and `(2 * (5 + 16)) + 5` for the third packet.
///
/// (The input/output buffer is expressed as combination of `in_prefix_len`
/// and `ciphertext_and_tag_modified_in_place` because Rust's type system
/// does not allow us to have two slices, one mutable and one immutable, that
/// reference overlapping memory.)
///
/// C analog: `EVP_AEAD_CTX_open`
///
/// Go analog: [`AEAD.Open`](https://golang.org/pkg/crypto/cipher/#AEAD)
pub fn open_in_place<'a>(key: &OpeningKey, nonce: &[u8], ad: &[u8],
                         in_prefix_len: usize,
                         ciphertext_and_tag_modified_in_place: &'a mut [u8])
                         -> Result<&'a mut [u8], error::Unspecified> {
    let nonce = slice_as_array_ref!(nonce, NONCE_LEN)?;
    let ciphertext_and_tag_len =
        ciphertext_and_tag_modified_in_place.len()
                .checked_sub(in_prefix_len).ok_or(error::Unspecified)?;
    let ciphertext_len =
        ciphertext_and_tag_len.checked_sub(TAG_LEN).ok_or(error::Unspecified)?;
    check_per_nonce_max_bytes(ciphertext_len)?;
    let (in_out, received_tag) =
        ciphertext_and_tag_modified_in_place
            .split_at_mut(in_prefix_len + ciphertext_len);
    let mut calculated_tag = [0u8; TAG_LEN];
    (key.key.algorithm.open)(&key.key.ctx_buf, nonce, &ad, in_prefix_len,
                             in_out, &mut calculated_tag)?;
    if constant_time::verify_slices_are_equal(&calculated_tag, received_tag)
            .is_err() {
        // Zero out the plaintext so that it isn't accidentally leaked or used
        // after verification fails. It would be safest if we could check the
        // tag before decrypting, but some `open` implementations interleave
        // authentication with decryption for performance.
        for b in &mut in_out[..ciphertext_len] {
            *b = 0;
        }
        return Err(error::Unspecified);
    }
    // `ciphertext_len` is also the plaintext length.
    Ok(&mut in_out[..ciphertext_len])
}

/// A key for encrypting and signing (“sealing”) data.
///
/// C analog: `EVP_AEAD_CTX` with direction `evp_aead_seal`.
///
/// Go analog: [`AEAD`](https://golang.org/pkg/crypto/cipher/#AEAD)
pub struct SealingKey {
    key: Key,
}

impl SealingKey {
    /// C analogs: `EVP_AEAD_CTX_init_with_direction` with direction
    ///            `evp_aead_seal`, `EVP_AEAD_CTX_init`.
    ///
    /// Go analog:
    ///   [`crypto.aes.NewCipher`](https://golang.org/pkg/crypto/aes/#NewCipher)
    /// + [`crypto.cipher.NewGCM`](https://golang.org/pkg/crypto/cipher/#NewGCM)
    #[inline]
    pub fn new(algorithm: &'static Algorithm, key_bytes: &[u8])
               -> Result<SealingKey, error::Unspecified> {
        let mut key = SealingKey {
            key: Key {
                algorithm: algorithm,
                ctx_buf: [0; KEY_CTX_BUF_ELEMS],
            },
        };
        key.key.init(key_bytes)?;
        Ok(key)
    }

    /// The key's AEAD algorithm.
    ///
    /// C analog: `EVP_AEAD_CTX.aead`
    #[inline(always)]
    pub fn algorithm(&self) -> &'static Algorithm { self.key.algorithm() }
}

/// Encrypts and signs (“seals”) data in place.
///
/// `nonce` must be unique for every use of the key to seal data.
///
/// The input is `in_out[..(in_out.len() - out_suffix_capacity)]`; i.e. the
/// input is the part of `in_out` that precedes the suffix. When
/// `seal_in_place()` returns `Ok(out_len)`, the encrypted and signed output is
/// `in_out[..out_len]`; i.e.  the output has been written over input and at
/// least part of the data reserved for the suffix. (The input/output buffer
/// is expressed this way because Rust's type system does not allow us to have
/// two slices, one mutable and one immutable, that reference overlapping
/// memory at the same time.)
///
/// `out_suffix_capacity` must be at least `key.algorithm().tag_len()`. See
/// also `MAX_TAG_LEN`.
///
/// `ad` is the additional authenticated data, if any.
///
/// C analog: `EVP_AEAD_CTX_seal`.
///
/// Go analog: [`AEAD.Seal`](https://golang.org/pkg/crypto/cipher/#AEAD)
pub fn seal_in_place(key: &SealingKey, nonce: &[u8], ad: &[u8],
                     in_out: &mut [u8], out_suffix_capacity: usize)
                     -> Result<usize, error::Unspecified> {
    if out_suffix_capacity < key.key.algorithm.tag_len() {
        return Err(error::Unspecified);
    }
    let nonce = slice_as_array_ref!(nonce, NONCE_LEN)?;
    let in_out_len =
        in_out.len().checked_sub(out_suffix_capacity).ok_or(error::Unspecified)?;
    check_per_nonce_max_bytes(in_out_len)?;
    let (in_out, tag_out) = in_out.split_at_mut(in_out_len);
    let tag_out = slice_as_array_ref_mut!(tag_out, TAG_LEN)?;
    (key.key.algorithm.seal)(&key.key.ctx_buf, nonce, ad, in_out, tag_out)?;
    Ok(in_out_len + TAG_LEN)
}

/// `OpeningKey` and `SealingKey` are type-safety wrappers around `Key`, which
/// does all the actual work via the C AEAD interface.
///
/// C analog: `EVP_AEAD_CTX`
struct Key {
    ctx_buf: [u64; KEY_CTX_BUF_ELEMS],
    algorithm: &'static Algorithm,
}

const KEY_CTX_BUF_ELEMS: usize = (KEY_CTX_BUF_LEN + 7) / 8;

// Keep this in sync with `aead_aes_gcm_ctx` in e_aes.c.
const KEY_CTX_BUF_LEN: usize = self::aes_gcm::AES_KEY_CTX_BUF_LEN;

impl Key {
    /// XXX: Assumes self.algorithm is already filled in.
    ///
    /// C analogs: `EVP_AEAD_CTX_init`, `EVP_AEAD_CTX_init_with_direction`
    fn init(&mut self, key_bytes: &[u8]) -> Result<(), error::Unspecified> {
        init::init_once();

        if key_bytes.len() != self.algorithm.key_len() {
            return Err(error::Unspecified);
        }

        let ctx_buf_bytes = polyfill::slice::u64_as_u8_mut(&mut self.ctx_buf);
        (self.algorithm.init)(ctx_buf_bytes, key_bytes)
    }

    /// The key's AEAD algorithm.
    #[inline(always)]
    fn algorithm(&self) -> &'static Algorithm { self.algorithm }
}

/// An AEAD Algorithm.
///
/// C analog: `EVP_AEAD`
///
/// Go analog:
///     [`crypto.cipher.AEAD`](https://golang.org/pkg/crypto/cipher/#AEAD)
pub struct Algorithm {
    init: fn(ctx_buf: &mut [u8], key: &[u8]) -> Result<(), error::Unspecified>,

    seal: fn(ctx: &[u64; KEY_CTX_BUF_ELEMS], nonce: &[u8; NONCE_LEN], ad: &[u8],
             in_out: &mut [u8], tag_out: &mut [u8; TAG_LEN])
             -> Result<(), error::Unspecified>,
    open: fn(ctx: &[u64; KEY_CTX_BUF_ELEMS], nonce: &[u8; NONCE_LEN],
             ad: &[u8], in_prefix_len: usize, in_out: &mut [u8],
             tag_out: &mut [u8; TAG_LEN]) -> Result<(), error::Unspecified>,

    key_len: usize,
    id: AlgorithmID,
}

impl Algorithm {
    /// The length of the key.
    ///
    /// C analog: `EVP_AEAD_key_length`
    #[inline(always)]
    pub fn key_len(&self) -> usize { self.key_len }

    /// The length of a tag.
    ///
    /// See also `MAX_TAG_LEN`.
    ///
    /// C analog: `EVP_AEAD_max_overhead`
    ///
    /// Go analog:
    ///   [`crypto.cipher.AEAD.Overhead`](https://golang.org/pkg/crypto/cipher/#AEAD)
    #[inline(always)]
    pub fn tag_len(&self) -> usize { TAG_LEN }

    /// The length of the nonces.
    ///
    /// C analog: `EVP_AEAD_nonce_length`
    ///
    /// Go analog:
    ///   [`crypto.cipher.AEAD.NonceSize`](https://golang.org/pkg/crypto/cipher/#AEAD)
    #[inline(always)]
    pub fn nonce_len(&self) -> usize { NONCE_LEN }
}

#[allow(non_camel_case_types)]
#[derive(Eq, PartialEq)]
enum AlgorithmID {
    AES_128_GCM,
    AES_256_GCM,
    CHACHA20_POLY1305,
}

impl PartialEq for Algorithm {
    fn eq(&self, other: &Self) -> bool { self.id == other.id }
}

impl Eq for Algorithm {}

/// The maximum length of a tag for the algorithms in this module.
pub const MAX_TAG_LEN: usize = TAG_LEN;

// All the AEADs we support use 128-bit tags.
const TAG_LEN: usize = poly1305::TAG_LEN;

// All the AEADs we support use 96-bit nonces.
const NONCE_LEN: usize = 96 / 8;


/// |GFp_chacha_20| uses a 32-bit block counter, so we disallow individual
/// operations that work on more than 256GB at a time, for all AEADs.
fn check_per_nonce_max_bytes(in_out_len: usize)
                             -> Result<(), error::Unspecified> {
    if polyfill::u64_from_usize(in_out_len) >= (1u64 << 32) * 64 - 64 {
        return Err(error::Unspecified);
    }
    Ok(())
}