1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Copyright © 2016–2017 University of Malta

// This program is free software: you can redistribute it and/or modify
// it under the terms of either
//
// * the GNU Lesser General Public License as published by the Free
//   Software Foundation, either version 3 of the License, or (at your
//   option) any later version, or
//
// * the GNU General Public License as published by the Free Software
//   Foundation, either version 3 of the License, or (at your option)
//   any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

//! # Rust bindings for GMP and MPFR
//!
//! The `gmp_mpfr` crate uses the
//! [GNU Multiple Precision Arithmetic Library](https://gmplib.org/)
//! (GMP), for integer and rational numbers.
//! The [GNU MPFR Library](http://www.mpfr.org/), a library for
//! multiple-precision floating-point computations, is used for
//! floating-point numbers.
//!
//! To understand the exact operation of the functions in this crate,
//! you can see the online documentation available at the
//! [GMP](https://gmplib.org/manual/) and
//! [MPFR](http://www.mpfr.org/mpfr-current/mpfr.html) pages.
//!
//! Just like GMP and MPFR, this crate is free software: you can
//! redistribute it and/or modify it under the terms of either
//!
//! * the GNU Lesser General Public License as published by the Free
//!   Software Foundation, either version 3 of the License, or (at
//!   your option) any later version, or
//! * the GNU General Public License as published by the Free Software
//!   Foundation, either version 3 of the License, or (at your option)
//!   any later version.
//!
//! # Basic use
//!
//! There are three main types defined in this crate:
//!
//! * [`Integer`](./struct.Integer.html) which holds an arbitrary
//!   precision integer,
//! * [`Rational`](./struct.Rational.html) which holds an arbitrary
//!   precision rational number, and
//! * [`Float`](./struct.Float.html) which holds a floating-point
//!   number with an exact precision.
//!
//! You can construct these types from primitive data types. The
//! standard arithmetic operators work on these types. Operators can
//! also operate on these types and primitive types; in this case, the
//! result is returned as an arbitrary precision type.
//!
//! # Examples
//!
//! You can construct arbitrary precision types from primitive types:
//!
//! ```rust
//! use gmp_mpfr::{Float, FromPrec, Integer, Rational};
//!
//! // Create an integer initialized as zero.
//! let int = Integer::new();
//! // Create a rational number, -22 / 4.
//! let rat = Rational::from((-22, 4));
//! // Create floating-point number with 16 bits of precision.
//! let flo = Float::from_prec(0xff00ff, 16);
//!
//! assert!(int.to_u32() == 0);
//! assert!(int == 0);
//! assert!(rat.numer().to_i32() == -11);
//! assert!(rat.denom().to_i32() == 2);
//! assert!(rat.to_f32() == -5.5);
//! assert!(flo.to_f64() == 0xff0100 as f64);
//! ```
//!
//! Arithmetic operations with mixed arbitrary and primitive types are
//! allowed.
//!
//! ```rust
//! use gmp_mpfr::Integer;
//!
//! let mut a = Integer::from(0xc);
//! a = (a << 80) + 0xffee;
//! assert!(a.to_string_radix(16) == "c0000000000000000ffee");
//! //                                 ^   ^   ^   ^   ^
//! //                                80  64  48  32  16
//! ```
//!
//! Note that in the above example, there is only one construction.
//! The `Integer` instance is moved into the shift operation so that
//! the result can be stored in the same instance, then that result is
//! similarly consumed by the addition operation.

extern crate gmp_mpfr_sys;

mod float;
mod integer;
mod rational;

pub use float::{Constant, Exp, Float, Prec, Round, Special, exp_max, exp_min,
                prec_max, prec_min};
pub use integer::{BitCount, Integer};
pub use rational::{MutNumerDenom, Rational};
use std::cmp::Ordering;

/// Assigns to a number from another value.
pub trait Assign<T> {
    /// Peforms the assignement.
    fn assign(&mut self, T);
}

/// Assigns to a number from another value, applying the specified
/// rounding method.
pub trait AssignRound<T> {
    /// Peforms the assignment and rounding.
    fn assign_round(&mut self, T, Round) -> Ordering;
}

/// Construct `Self` via a conversion with a specified precision.
pub trait FromPrec<T> {
    /// Performs the conversion.
    fn from_prec(T, Prec) -> Self;
}

/// Construct `Self` via a conversion with a specified precision,
/// applying the specified rounding method.
pub trait FromPrecRound<T>
    where Self: Sized
{
    /// Performs the conversion.
    fn from_prec_round(T, Prec, Round) -> (Self, Ordering);
}

/// Negates the value inside `self`.
pub trait NegAssign {
    /// Peforms the negation.
    fn neg_assign(&mut self);
}

/// Provides negation with a specified rounding method.
pub trait NegRound {
    /// The resulting type after the negation.
    type Output;
    /// Performs the negation.
    fn neg_round(self, Round) -> (Self::Output, Ordering);
}

/// Subtract and assigns the result to the rhs operand.
/// `rhs.sub_from_assign(lhs)` has the same effect as
/// `rhs = lhs - rhs`.
///
/// # Examples
///
/// ```rust
/// use gmp_mpfr::{Integer, SubFromAssign};
/// let mut i = Integer::from(10);
/// i.sub_from_assign(100);
/// // i = 100 - 10
/// assert!(i == 90);
/// ```
pub trait SubFromAssign<Lhs = Self> {
    /// Peforms the subtraction.
    fn sub_from_assign(&mut self, Lhs);
}

/// Divide and assign the result to the rhs operand.
/// `rhs.div_from_assign(lhs)` has the same effect as
/// `rhs = lhs / rhs`.
///
/// # Examples
///
/// ```rust
/// use gmp_mpfr::{DivFromAssign, Float, FromPrec};
/// let mut f = Float::from_prec(1.5, 53);
/// f.div_from_assign(3);
/// // f = 3 / 1.5
/// assert!(f == 2);
/// ```
pub trait DivFromAssign<Lhs = Self> {
    /// Peforms the division.
    fn div_from_assign(&mut self, Lhs);
}

/// Provides addition with a specified rounding method.
pub trait AddRound<T> {
    /// The resulting type after the addition.
    type Output;
    /// Performs the addition.
    fn add_round(self, T, Round) -> (Self::Output, Ordering);
}

/// Provides subtraction with a specified rounding method.
pub trait SubRound<T> {
    /// The resulting type after the subtraction.
    type Output;
    /// Performs the subtraction.
    fn sub_round(self, T, Round) -> (Self::Output, Ordering);
}

/// Provides multiplication with a specified rounding method.
pub trait MulRound<T> {
    /// The resulting type after the multiplication.
    type Output;
    /// Performs the multiplication.
    fn mul_round(self, T, Round) -> (Self::Output, Ordering);
}

/// Provides division with a specified rounding method.
pub trait DivRound<T> {
    /// The resulting type after the division.
    type Output;
    /// Performs the division.
    fn div_round(self, T, Round) -> (Self::Output, Ordering);
}

/// Provides the left shift operation with a specified rounding
/// method.
pub trait ShlRound<T> {
    /// The resulting type after the left shift operation.
    type Output;
    /// Performs the left shift operation.
    fn shl_round(self, T, Round) -> (Self::Output, Ordering);
}

/// Provides the right shift operation with a specified rounding
/// method.
pub trait ShrRound<T> {
    /// The resulting type after the right shift operation.
    type Output;
    /// Performs the right shift operation.
    fn shr_round(self, T, Round) -> (Self::Output, Ordering);
}

/// Provides the power operation.
pub trait Pow<T> {
    /// The resulting type after the power operation.
    type Output;
    /// Performs the power operation.
    fn pow(self, T) -> Self::Output;
}

/// Provides the power operation inside `self`.
pub trait PowAssign<T> {
    /// Peforms the power operation.
    fn pow_assign(&mut self, T);
}

/// Provides the power operation inside `self` with a specified
/// rounding method.
pub trait PowRound<T> {
    /// The resulting type after the power operation.
    type Output;
    /// Performs the power operation.
    fn pow_round(self, T, Round) -> (Self::Output, Ordering);
}