1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
//! This is a minimal library implementing global, thread-safe counters.

/// This module contains atomic counters for primitive integer types.
pub mod primitive {
    use std::sync::atomic::{
        AtomicI16, AtomicI32, AtomicI64, AtomicI8, AtomicU16, AtomicU32, AtomicU64, AtomicU8,
        Ordering,
    };

    macro_rules! primitive_counter {
            ($( $primitive:ident $atomic:ident $counter:ident ), *) => {
                $(
                    /// A primitive counter, implemented using atomics from `std::sync::atomic`.
                    ///
                    /// This counter makes all the same guarantees a generic counter does.
                    /// Especially, calling `inc` N times from different threads will always result in the counter effectively being incremented by N.
                    ///
                    /// Regarding atomic ordering, `Ordering::SeqCst` is currently used whenever possible.
                    /// This unstable detail should never be relied on for soundness.
                    ///
                    /// Please note that Atomics may, depending on your compilation target, [not be implemented using atomic instructions](https://llvm.org/docs/Atomics.html),
                    /// meaning lock-freendom can in the general case not be guaranteed.
                    ///
                    /// This counter should in general be superior in performance, compared to the equivalent generic counter.
                    #[derive(Debug, Default)]
                    pub struct $counter($atomic);

                    impl $counter{
                        /// Creates a new primitive counter. Can be used in const contexts.
                        #[allow(dead_code)]
                        #[inline]
                        pub const fn new(val : $primitive) -> $counter{
                            $counter($atomic::new(val))
                        }

                        /// Gets the current value of the counter.
                        #[allow(dead_code)]
                        #[inline]
                        pub fn get(&self) -> $primitive{
                            self.0.load(Ordering::SeqCst)
                        }

                        /// Sets the counter to a new value.
                        #[allow(dead_code)]
                        #[inline]
                        pub fn set(&self, val : $primitive){
                            self.0.store(val, Ordering::SeqCst);
                        }

                        /// Increments the counter by one.
                        #[allow(dead_code)]
                        #[inline]
                        pub fn inc(&self) -> $primitive{
                            self.0.fetch_add(1, Ordering::SeqCst)
                        }

                        /// Resets the counter to zero.
                        #[allow(dead_code)]
                        #[inline]
                        pub fn reset(&self){
                            self.0.store(0, Ordering::SeqCst);
                        }
                    }
                )*
            };
        }

    primitive_counter![u8 AtomicU8 CounterU8, u16 AtomicU16 CounterU16, u32 AtomicU32 CounterU32, u64 AtomicU64 CounterU64, i8 AtomicI8 CounterI8, i16 AtomicI16 CounterI16, i32 AtomicI32 CounterI32, i64 AtomicI64 CounterI64];
}

/// This module contains a generic, thread-safe counter and the accompanying `Inc` trait.
pub mod generic {
    use parking_lot::Mutex;

    /// This trait abstracts over incrementing behaviour.
    /// Implemented for standard integer types.
    /// The current value is mutated, becoming the new, incremented value.
    pub trait Inc {
        fn inc(&mut self);
    }

    macro_rules! imp {
        ($( $t:ty ) *) => {
            $(
                impl Inc for $t{
                    #[inline]
                    fn inc(&mut self){
                        *self += 1;
                    }
                }
            )*
        };
    }

    imp![u8 u16 u32 u64 u128 i8 i16 i32 i64 i128];

    /// A generic counter.
    ///
    /// This counter is `Send + Sync` regardless of its contents, meaning it is always globally available from all threads, concurrently.
    ///
    /// Implement `Inc` by supplying an impl for incrementing your type. This implementation does not need to be thread-safe.
    ///
    /// Implementation-wise, this is basically a [Mutex from parking_lot](/lock_api/struct.Mutex.html).
    #[derive(Debug, Default)]
    pub struct Counter<T: Inc>(Mutex<T>);

    /// Creates a new generic, global counter, starting from the given value.
    ///
    /// This macro is exported at the crates top-level.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] use crate::global_counter::*;
    /// type CountedType = u32;
    /// fn main(){
    ///     const start_value : u32 = 0;
    ///     global_counter!(COUNTER_NAME, CountedType, start_value);
    ///     assert_eq!(COUNTER_NAME.get_cloned(), 0);
    ///     COUNTER_NAME.inc();
    ///     assert_eq!(COUNTER_NAME.get_cloned(), 1);
    /// }
    /// ```
    #[macro_export]
    macro_rules! global_counter {
            ($name:ident, $type:ident, $value:ident) => {
                lazy_static::lazy_static! {
                    static ref $name : global_counter::generic::Counter<$type> = global_counter::generic::Counter::new($value);
                }
            };
        }

    /// Creates a new generic, global counter, starting from its (inherited) default value.
    ///
    /// This macro will fail compilation if the given type is not `Default`.
    ///
    /// This macro is exported at the crates top-level.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] use crate::global_counter::*;
    /// type CountedType = u32;
    /// fn main(){
    ///     global_default_counter!(COUNTER_NAME, CountedType);
    ///     assert_eq!(COUNTER_NAME.get_cloned(), 0);
    ///     COUNTER_NAME.inc();
    ///     assert_eq!(COUNTER_NAME.get_cloned(), 1);
    /// }
    /// ```
    #[macro_export]
    macro_rules! global_default_counter {
        ($name:ident, $type:ty) => {
            lazy_static::lazy_static! {
                static ref $name : generic::Counter<$type> = generic::Counter::default();
            }
        };
    }

    impl<T: Inc> Counter<T> {
        /// Creates a new generic counter
        ///
        /// This function is not const yet. As soon as [Mutex::new()](../../lock_api/struct.Mutex.html#method.new) is stable as `const fn`, this will be as well.
        /// Then, the exported macros will no longer be needed.
        #[allow(dead_code)]
        #[inline]
        pub fn new(val: T) -> Counter<T> {
            Counter(Mutex::new(val))
        }

        /// Returns (basically) an immutable borrow of the underlying value.
        /// Best make sure this borrow goes dead before any other accesses to the counter are made.
        ///
        /// If `T` is not [Clone](std::Clone), this is the only way to access the current value of the counter.
        ///
        /// **Warning**: Attempting to access the counter from the thread holding this borrow **will** result in a deadlock.
        /// As long as this borrow is alive, no accesses to the counter from any thread are possible.
        ///
        /// # Good Example - Borrow goes out of scope
        /// ```
        /// # #[macro_use] use crate::global_counter::*;
        /// fn main(){
        ///     global_default_counter!(COUNTER, u8);
        ///     assert_eq!(0, *COUNTER.get_borrowed());
        ///
        ///     // The borrow is already out of scope, we can call inc safely.
        ///     COUNTER.inc();
        ///
        ///     assert_eq!(1, *COUNTER.get_borrowed());}
        /// ```
        ///
        /// # Good Example - At most one concurrent access per thread
        /// ```
        /// # #[macro_use] use crate::global_counter::*;
        /// fn main(){
        ///     global_default_counter!(COUNTER, u8);
        ///     assert_eq!(0, *COUNTER.get_borrowed());
        ///     
        ///     // Using this code, there is no danger of data races, race coditions whatsoever.
        ///     // Beacuse at each point in time, each thread either has a borrow of the Counters value alive,
        ///     // or is accessing the Counter using its api, never both at the same time.
        ///     let t1 = std::thread::spawn(move || {
        ///         COUNTER.inc();
        ///         let value_borrowed = COUNTER.get_borrowed();
        ///         assert!(1 <= *value_borrowed, *value_borrowed <= 3);
        ///     });
        ///     let t2 = std::thread::spawn(move || {
        ///         COUNTER.inc();
        ///         let value_borrowed = COUNTER.get_borrowed();
        ///         assert!(1 <= *value_borrowed, *value_borrowed <= 3);
        ///     });
        ///     let t3 = std::thread::spawn(move || {
        ///         COUNTER.inc();
        ///         let value_borrowed = COUNTER.get_borrowed();
        ///         assert!(1 <= *value_borrowed, *value_borrowed <= 3);
        ///     });
        ///
        ///     t1.join().unwrap();
        ///     t2.join().unwrap();
        ///     t3.join().unwrap();
        ///     
        ///     assert_eq!(3, *COUNTER.get_borrowed());}
        /// ```
        ///
        /// # Bad Example - Deadlock
        /// ```no_run
        /// # #[macro_use] use crate::global_counter::*;
        /// // We spawn a new thread. This thread will try lockig the counter twice, causing a deadlock.
        /// std::thread::spawn(move || {
        ///
        ///     // We could also use get_cloned with this counter, circumventing all these troubles.
        ///     global_default_counter!(COUNTER, u32);
        ///     
        ///     // The borrow is now alive, and this thread now holds a lock onto the Counter.
        ///     let counter_value_borrowed = COUNTER.get_borrowed();
        ///     assert_eq!(0, *counter_value_borrowed);
        ///
        ///     // Now we try to lock the counter again, but we already hold a lock in the current thread! Deadlock!
        ///     COUNTER.inc();
        ///     
        ///     // Here we use `counter_value_borrowed` again, ensuring it can't be dropped "fortunately".
        ///     // This line will never actually be reached.
        ///     assert_eq!(0, *counter_value_borrowed);
        /// });
        /// ```
        #[allow(dead_code)]
        #[inline]
        pub fn get_borrowed(&self) -> impl std::ops::Deref<Target = T> + '_ {
            self.0.lock()
        }

        /// Sets the Counter to the given value.
        #[allow(dead_code)]
        #[inline]
        pub fn set(&self, val: T) {
            *self.0.lock() = val;
        }

        /// Increments the Counter, delegating the specific implementation to the [Inc](trait.Inc.html) trait.
        #[allow(dead_code)]
        #[inline]
        pub fn inc(&self) {
            (*self.0.lock()).inc();
        }
    }

    impl<T: Inc + Clone> Counter<T> {
        /// This avoid the troubles of [get_borrowed](struct.Counter.html#method.get_borrowed) by cloning the current value.
        ///
        /// Creating a deadlock using this API should be impossible.
        /// The downside of this approach is the cost of a forced clone which may, depending on your use case, not be affordable.
        #[allow(dead_code)]
        #[inline]
        pub fn get_cloned(&self) -> T {
            (*self.0.lock()).clone()
        }

        /// Increments the Counter, returning the previous value, cloned.
        #[allow(dead_code)]
        #[inline]
        pub fn inc_cloning(&self) -> T {
            let prev = self.get_cloned();
            self.inc();
            prev
        }
    }

    impl<T: Inc + Default> Counter<T> {
        /// Resets the Counter to its default value.
        #[allow(dead_code)]
        #[inline]
        pub fn reset(&self) {
            self.set(T::default());
        }
    }
}

#[cfg(test)]
mod tests {

    #[cfg(test)]
    mod generic {

        #![allow(unused_attributes)]
        #[macro_use]
        use crate::*;

        // TODO: Add tests for get_borrowed.

        #[test]
        fn count_to_five_single_threaded() {
            global_default_counter!(COUNTER, u32);
            assert_eq!(COUNTER.get_cloned(), 0);
            COUNTER.inc();
            assert_eq!(COUNTER.get_cloned(), 1);
            COUNTER.inc();
            assert_eq!(COUNTER.get_cloned(), 2);
            COUNTER.inc();
            assert_eq!(COUNTER.get_cloned(), 3);
            COUNTER.inc();
            assert_eq!(COUNTER.get_cloned(), 4);
            COUNTER.inc();
            assert_eq!(COUNTER.get_cloned(), 5);
        }

        // TODO: Clean up this mess

        #[derive(Clone, Default, PartialEq, Eq, Debug)]
        struct Baz<T> {
            i: i32,
            u: i32,
            _marker: std::marker::PhantomData<T>,
        }

        impl<T> crate::generic::Inc for Baz<T> {
            fn inc(&mut self) {
                self.i += 1;
            }
        }

        type Bar = Baz<std::cell::RefCell<u32>>;

        #[test]
        fn count_struct() {
            global_default_counter!(COUNTER, Bar);
            assert_eq!(
                COUNTER.get_cloned(),
                Baz {
                    i: 0,
                    u: 0,
                    _marker: std::marker::PhantomData
                }
            );
            COUNTER.inc();
            assert_eq!(
                COUNTER.get_cloned(),
                Baz {
                    i: 1,
                    u: 0,
                    _marker: std::marker::PhantomData
                }
            );
            COUNTER.inc();
            assert_eq!(
                COUNTER.get_cloned(),
                Baz {
                    i: 2,
                    u: 0,
                    _marker: std::marker::PhantomData
                }
            );
            COUNTER.inc();
            assert_eq!(
                COUNTER.get_cloned(),
                Baz {
                    i: 3,
                    u: 0,
                    _marker: std::marker::PhantomData
                }
            );
            COUNTER.inc();
            assert_eq!(
                COUNTER.get_cloned(),
                Baz {
                    i: 4,
                    u: 0,
                    _marker: std::marker::PhantomData
                }
            );
            COUNTER.inc();
            assert_eq!(
                COUNTER.get_cloned(),
                Baz {
                    i: 5,
                    u: 0,
                    _marker: std::marker::PhantomData
                }
            );
        }

        #[test]
        fn count_to_50000_single_threaded() {
            global_default_counter!(COUNTER, u32);
            assert_eq!(COUNTER.get_cloned(), 0);

            for _ in 0..50000 {
                COUNTER.inc();
            }

            assert_eq!(COUNTER.get_cloned(), 50000);
        }

        #[test]
        fn count_to_five_seq_threaded() {
            global_default_counter!(COUNTER, u32);
            assert_eq!(COUNTER.get_cloned(), 0);

            let t_0 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            t_0.join().expect("Err joining thread");
            assert_eq!(COUNTER.get_cloned(), 1);

            let t_1 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            t_1.join().expect("Err joining thread");
            assert_eq!(COUNTER.get_cloned(), 2);

            let t_2 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            t_2.join().expect("Err joining thread");
            assert_eq!(COUNTER.get_cloned(), 3);

            let t_3 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            t_3.join().expect("Err joining thread");
            assert_eq!(COUNTER.get_cloned(), 4);

            let t_4 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            t_4.join().expect("Err joining thread");
            assert_eq!(COUNTER.get_cloned(), 5);
        }

        #[test]
        fn count_to_50000_seq_threaded() {
            global_default_counter!(COUNTER, u32);
            assert_eq!(COUNTER.get_cloned(), 0);

            let t_0 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            t_0.join().expect("Err joining thread");
            assert_eq!(COUNTER.get_cloned(), 10000);

            let t_1 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            t_1.join().expect("Err joining thread");
            assert_eq!(COUNTER.get_cloned(), 20000);

            let t_2 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            t_2.join().expect("Err joining thread");
            assert_eq!(COUNTER.get_cloned(), 30000);

            let t_3 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            t_3.join().expect("Err joining thread");
            assert_eq!(COUNTER.get_cloned(), 40000);

            let t_4 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            t_4.join().expect("Err joining thread");
            assert_eq!(COUNTER.get_cloned(), 50000);
        }

        #[test]
        fn count_to_five_par_threaded() {
            global_default_counter!(COUNTER, u32);
            assert_eq!(COUNTER.get_cloned(), 0);

            let t_0 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            let t_1 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            let t_2 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            let t_3 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            let t_4 = std::thread::spawn(|| {
                COUNTER.inc();
            });

            t_0.join().expect("Err joining thread");
            t_1.join().expect("Err joining thread");
            t_2.join().expect("Err joining thread");
            t_3.join().expect("Err joining thread");
            t_4.join().expect("Err joining thread");

            assert_eq!(COUNTER.get_cloned(), 5);
        }

        #[test]
        fn count_to_50000_par_threaded() {
            global_default_counter!(COUNTER, u32);
            assert_eq!(COUNTER.get_cloned(), 0);

            let t_0 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            let t_1 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            let t_2 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            let t_3 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            let t_4 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });

            t_0.join().expect("Err joining thread");
            t_1.join().expect("Err joining thread");
            t_2.join().expect("Err joining thread");
            t_3.join().expect("Err joining thread");
            t_4.join().expect("Err joining thread");

            assert_eq!(COUNTER.get_cloned(), 50000);
        }

        #[test]
        fn reset() {
            global_default_counter!(COUNTER, u32);
            assert_eq!(COUNTER.get_cloned(), 0);
            COUNTER.inc();
            assert_eq!(COUNTER.get_cloned(), 1);
            COUNTER.inc();
            assert_eq!(COUNTER.get_cloned(), 2);
            COUNTER.inc();
            assert_eq!(COUNTER.get_cloned(), 3);

            COUNTER.reset();
            assert_eq!(COUNTER.get_cloned(), 0);
            COUNTER.inc();
            assert_eq!(COUNTER.get_cloned(), 1);
        }
    }

    #[cfg(test)]
    mod primitive {

        use crate::primitive::*;

        #[test]
        fn primitive_new_const() {
            static COUNTERU8: CounterU8 = CounterU8::new(0);
            assert_eq!(COUNTERU8.get(), 0);
            COUNTERU8.inc();
            assert_eq!(COUNTERU8.get(), 1);

            static COUNTERU16: CounterU16 = CounterU16::new(0);
            assert_eq!(COUNTERU16.get(), 0);
            COUNTERU16.inc();
            assert_eq!(COUNTERU16.get(), 1);

            static COUNTERU32: CounterU32 = CounterU32::new(0);
            assert_eq!(COUNTERU32.get(), 0);
            COUNTERU32.inc();
            assert_eq!(COUNTERU32.get(), 1);

            static COUNTERU64: CounterU64 = CounterU64::new(0);
            assert_eq!(COUNTERU64.get(), 0);
            COUNTERU64.inc();
            assert_eq!(COUNTERU64.get(), 1);

            static COUNTERI8: CounterI8 = CounterI8::new(0);
            assert_eq!(COUNTERI8.get(), 0);
            COUNTERI8.inc();
            assert_eq!(COUNTERI8.get(), 1);

            static COUNTERI16: CounterI16 = CounterI16::new(0);
            assert_eq!(COUNTERI16.get(), 0);
            COUNTERI16.inc();
            assert_eq!(COUNTERI16.get(), 1);

            static COUNTERI32: CounterI32 = CounterI32::new(0);
            assert_eq!(COUNTERI32.get(), 0);
            COUNTERI32.inc();
            assert_eq!(COUNTERI32.get(), 1);

            static COUNTERI64: CounterI64 = CounterI64::new(0);
            assert_eq!(COUNTERI64.get(), 0);
            COUNTERI64.inc();
            assert_eq!(COUNTERI64.get(), 1);
        }

        #[test]
        fn primitive_reset() {
            static COUNTER: CounterU8 = CounterU8::new(0);
            assert_eq!(COUNTER.get(), 0);
            COUNTER.inc();
            assert_eq!(COUNTER.get(), 1);
            COUNTER.inc();
            assert_eq!(COUNTER.get(), 2);
            COUNTER.inc();
            assert_eq!(COUNTER.get(), 3);
            COUNTER.reset();
            assert_eq!(COUNTER.get(), 0);
        }

        #[test]
        fn count_to_five_single_threaded() {
            static COUNTER: CounterU32 = CounterU32::new(0);
            assert_eq!(COUNTER.get(), 0);
            COUNTER.inc();
            assert_eq!(COUNTER.get(), 1);
            COUNTER.inc();
            assert_eq!(COUNTER.get(), 2);
            COUNTER.inc();
            assert_eq!(COUNTER.get(), 3);
            COUNTER.inc();
            assert_eq!(COUNTER.get(), 4);
            COUNTER.inc();
            assert_eq!(COUNTER.get(), 5);
        }

        #[test]
        fn count_to_50000_single_threaded() {
            static COUNTER: CounterU32 = CounterU32::new(0);
            assert_eq!(COUNTER.get(), 0);

            for _ in 0..50000 {
                COUNTER.inc();
            }

            assert_eq!(COUNTER.get(), 50000);
        }

        #[test]
        fn count_to_five_seq_threaded() {
            static COUNTER: CounterU32 = CounterU32::new(0);
            assert_eq!(COUNTER.get(), 0);

            let t_0 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            t_0.join().expect("Err joining thread");
            assert_eq!(COUNTER.get(), 1);

            let t_1 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            t_1.join().expect("Err joining thread");
            assert_eq!(COUNTER.get(), 2);

            let t_2 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            t_2.join().expect("Err joining thread");
            assert_eq!(COUNTER.get(), 3);

            let t_3 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            t_3.join().expect("Err joining thread");
            assert_eq!(COUNTER.get(), 4);

            let t_4 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            t_4.join().expect("Err joining thread");
            assert_eq!(COUNTER.get(), 5);
        }

        #[test]
        fn count_to_50000_seq_threaded() {
            static COUNTER: CounterU32 = CounterU32::new(0);
            assert_eq!(COUNTER.get(), 0);

            let t_0 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            t_0.join().expect("Err joining thread");
            assert_eq!(COUNTER.get(), 10000);

            let t_1 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            t_1.join().expect("Err joining thread");
            assert_eq!(COUNTER.get(), 20000);

            let t_2 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            t_2.join().expect("Err joining thread");
            assert_eq!(COUNTER.get(), 30000);

            let t_3 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            t_3.join().expect("Err joining thread");
            assert_eq!(COUNTER.get(), 40000);

            let t_4 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            t_4.join().expect("Err joining thread");
            assert_eq!(COUNTER.get(), 50000);
        }

        #[test]
        fn count_to_five_par_threaded() {
            static COUNTER: CounterU32 = CounterU32::new(0);
            assert_eq!(COUNTER.get(), 0);

            let t_0 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            let t_1 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            let t_2 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            let t_3 = std::thread::spawn(|| {
                COUNTER.inc();
            });
            let t_4 = std::thread::spawn(|| {
                COUNTER.inc();
            });

            t_0.join().expect("Err joining thread");
            t_1.join().expect("Err joining thread");
            t_2.join().expect("Err joining thread");
            t_3.join().expect("Err joining thread");
            t_4.join().expect("Err joining thread");

            assert_eq!(COUNTER.get(), 5);
        }

        #[test]
        fn count_to_50000_par_threaded() {
            static COUNTER: CounterU32 = CounterU32::new(0);
            assert_eq!(COUNTER.get(), 0);

            let t_0 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            let t_1 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            let t_2 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            let t_3 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });
            let t_4 = std::thread::spawn(|| {
                for _ in 0..10000 {
                    COUNTER.inc();
                }
            });

            t_0.join().expect("Err joining thread");
            t_1.join().expect("Err joining thread");
            t_2.join().expect("Err joining thread");
            t_3.join().expect("Err joining thread");
            t_4.join().expect("Err joining thread");

            assert_eq!(COUNTER.get(), 50000);
        }
    }
}