1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
use super::{scalar_sin_cos, Vec2, Vec4};
#[cfg(all(
    target_arch = "x86",
    target_feature = "sse2",
    not(feature = "scalar-math")
))]
use std::arch::x86::*;
#[cfg(all(
    target_arch = "x86_64",
    target_feature = "sse2",
    not(feature = "scalar-math")
))]
use std::arch::x86_64::*;

use std::{
    fmt,
    ops::{Add, Mul, Sub},
};

#[inline]
pub fn mat2(x_axis: Vec2, y_axis: Vec2) -> Mat2 {
    Mat2::from_cols(x_axis, y_axis)
}

/// A 2x2 column major matrix.
#[derive(Clone, Copy, PartialEq, PartialOrd, Debug)]
#[repr(C)]
pub struct Mat2(pub(crate) Vec4);

impl Default for Mat2 {
    #[inline]
    fn default() -> Self {
        Self::identity()
    }
}

impl fmt::Display for Mat2 {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "[{}, {}]", self.x_axis(), self.y_axis())
    }
}

impl Mat2 {
    /// Creates a 2x2 matrix with all elements set to `0.0`.
    #[inline]
    pub fn zero() -> Self {
        Mat2(Vec4::zero())
    }

    /// Creates a 2x2 identity matrix.
    #[inline]
    pub fn identity() -> Self {
        Self(Vec4::new(1.0, 0.0, 0.0, 1.0))
    }

    /// Creates a 2x2 matrix from four column vectors.
    #[inline]
    pub fn from_cols(x_axis: Vec2, y_axis: Vec2) -> Self {
        Self(Vec4::new(x_axis.x(), x_axis.y(), y_axis.x(), y_axis.y()))
    }

    /// Creates a 2x2 matrix from a `[f32; 4]` stored in column major order.  If
    /// your data is stored in row major you will need to `transpose` the
    /// returned matrix.
    #[inline]
    pub fn from_cols_array(m: &[f32; 4]) -> Self {
        Mat2(Vec4::new(m[0], m[1], m[2], m[3]))
    }

    /// Creates a `[f32; 4]` storing data in column major order.
    /// If you require data in row major order `transpose` the matrix first.
    #[inline]
    pub fn to_cols_array(&self) -> [f32; 4] {
        self.0.into()
    }

    /// Creates a 2x2 matrix from a `[[f32; 2]; 2]` stored in column major
    /// order.  If your data is in row major order you will need to `transpose`
    /// the returned matrix.
    #[inline]
    pub fn from_cols_array_2d(m: &[[f32; 2]; 2]) -> Self {
        Mat2(Vec4::new(m[0][0], m[0][1], m[1][0], m[1][1]))
    }

    /// Creates a `[[f32; 2]; 2]` storing data in column major order.
    /// If you require data in row major order `transpose` the matrix first.
    #[inline]
    pub fn to_cols_array_2d(&self) -> [[f32; 2]; 2] {
        let (x0, y0, x1, y1) = self.0.into();
        [[x0, y0], [x1, y1]]
    }

    /// Creates a 2x2 matrix containing the given `scale` and rotation of
    /// `angle` (in radians).
    #[inline]
    pub fn from_scale_angle(scale: Vec2, angle: f32) -> Self {
        let (sin, cos) = scalar_sin_cos(angle);
        let (scale_x, scale_y) = scale.into();
        Self(Vec4::new(
            cos * scale_x,
            sin * scale_x,
            -sin * scale_y,
            cos * scale_y,
        ))
    }

    /// Creates a 2x2 matrix containing a rotation of `angle` (in radians).
    #[inline]
    pub fn from_angle(angle: f32) -> Self {
        let (sin, cos) = scalar_sin_cos(angle);
        Self(Vec4::new(cos, sin, -sin, cos))
    }

    /// Creates a 2x2 matrix containing the given non-uniform `scale`.
    #[inline]
    pub fn from_scale(scale: Vec2) -> Self {
        let (x, y) = scale.into();
        Self(Vec4::new(x, 0.0, 0.0, y))
    }

    #[inline]
    pub fn set_x_axis(&mut self, x: Vec2) {
        let m = self.0.as_mut();
        m[0] = x.x();
        m[1] = x.y();
    }

    #[inline]
    pub fn set_y_axis(&mut self, y: Vec2) {
        let m = self.0.as_mut();
        m[2] = y.x();
        m[3] = y.y();
    }

    #[inline]
    pub fn x_axis(&self) -> Vec2 {
        let (x, y, _, _) = self.0.into();
        Vec2::new(x, y)
    }

    #[inline]
    pub fn y_axis(&self) -> Vec2 {
        let (_, _, x, y) = self.0.into();
        Vec2::new(x, y)
    }

    // #[inline]
    // pub(crate) fn col(&self, index: usize) -> Vec2 {
    //     match index {
    //         0 => self.x_axis(),
    //         1 => self.y_axis(),
    //         _ => panic!(
    //             "index out of bounds: the len is 2 but the index is {}",
    //             index
    //         ),
    //     }
    // }

    // #[inline]
    // pub(crate) fn col_mut(&mut self, index: usize) -> &mut Vec2 {
    //     match index {
    //         0 => unsafe { &mut *(self.0.as_mut().as_mut_ptr() as *mut Vec2) },
    //         1 => unsafe { &mut *(self.0.as_mut()[2..].as_mut_ptr() as *mut Vec2) },
    //         _ => panic!(
    //             "index out of bounds: the len is 2 but the index is {}",
    //             index
    //         ),
    //     }
    // }

    /// Returns the transpose of `self`.
    #[inline]
    pub fn transpose(&self) -> Self {
        #[cfg(any(not(target_feature = "sse2"), feature = "scalar-math"))]
        {
            let (m00, m01, m10, m11) = self.0.into();
            Self(Vec4::new(m00, m10, m01, m11))
        }

        #[cfg(all(target_feature = "sse2", not(feature = "scalar-math")))]
        unsafe {
            let abcd = self.0.into();
            let acbd = _mm_shuffle_ps(abcd, abcd, 0b11_01_10_00);
            Self(acbd.into())
        }
    }

    /// Returns the determinant of `self`.
    #[inline]
    pub fn determinant(&self) -> f32 {
        #[cfg(any(not(target_feature = "sse2"), feature = "scalar-math"))]
        {
            let (a, b, c, d) = self.0.into();
            a * d - b * c
        }

        #[cfg(all(target_feature = "sse2", not(feature = "scalar-math")))]
        unsafe {
            let abcd = self.0.into();
            let dcba = _mm_shuffle_ps(abcd, abcd, 0b00_01_10_11);
            let prod = _mm_mul_ps(abcd, dcba);
            let det = _mm_sub_ps(prod, _mm_shuffle_ps(prod, prod, 0b01_01_01_01));
            _mm_cvtss_f32(det)
        }
    }

    /// Returns the inverse of `self`.
    ///
    /// If the matrix is not invertible the returned matrix will be invalid.
    #[inline]
    pub fn inverse(&self) -> Self {
        #[cfg(any(not(target_feature = "sse2"), feature = "scalar-math"))]
        {
            let (a, b, c, d) = self.0.into();
            let det = a * d - b * c;
            glam_assert!(det != 0.0);
            let tmp = Vec4::new(1.0, -1.0, -1.0, 1.0) / det;
            Self(Vec4::new(d, b, c, a) * tmp)
        }

        #[cfg(all(target_feature = "sse2", not(feature = "scalar-math")))]
        unsafe {
            let abcd = self.0.into();
            let dcba = _mm_shuffle_ps(abcd, abcd, 0b00_01_10_11);
            let prod = _mm_mul_ps(abcd, dcba);
            let sub = _mm_sub_ps(prod, _mm_shuffle_ps(prod, prod, 0b01_01_01_01));
            let det = _mm_shuffle_ps(sub, sub, 0b00_00_00_00);
            let tmp = _mm_div_ps(_mm_set_ps(1.0, -1.0, -1.0, 1.0), det);
            let dbca = _mm_shuffle_ps(abcd, abcd, 0b00_10_01_11);
            Self(_mm_mul_ps(dbca, tmp).into())
        }
    }

    #[inline]
    pub fn mul_vec2(&self, other: Vec2) -> Vec2 {
        // TODO: SSE2
        let other = Vec4::new(other.x(), other.x(), other.y(), other.y());
        let tmp = self.0 * other;
        let (x0, y0, x1, y1) = tmp.into();
        Vec2::new(x0 + x1, y0 + y1)
    }

    #[inline]
    pub fn mul_mat2(&self, other: &Self) -> Self {
        // TODO: SSE2
        let (x0, y0, x1, y1) = other.0.into();
        Mat2::from_cols(
            self.mul_vec2(Vec2::new(x0, y0)),
            self.mul_vec2(Vec2::new(x1, y1)),
        )
    }

    #[inline]
    pub fn add_mat2(&self, other: &Self) -> Self {
        Mat2(self.0 + other.0)
    }

    #[inline]
    pub fn sub_mat2(&self, other: &Self) -> Self {
        Mat2(self.0 - other.0)
    }

    #[inline]
    pub fn mul_scalar(&self, other: f32) -> Self {
        let s = Vec4::splat(other);
        Mat2(self.0 * s)
    }

    /// Returns true if the absolute difference of all elements between `self`
    /// and `other` is less than or equal to `max_abs_diff`.
    ///
    /// This can be used to compare if two `Mat2`'s contain similar elements. It
    /// works best when comparing with a known value. The `max_abs_diff` that
    /// should be used used depends on the values being compared against.
    ///
    /// For more on floating point comparisons see
    /// https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
    #[inline]
    pub fn abs_diff_eq(&self, other: Self, max_abs_diff: f32) -> bool {
        self.0.abs_diff_eq(other.0, max_abs_diff)
    }
}

impl AsRef<[f32; 4]> for Mat2 {
    #[inline]
    fn as_ref(&self) -> &[f32; 4] {
        unsafe { &*(self as *const Self as *const [f32; 4]) }
    }
}

impl AsMut<[f32; 4]> for Mat2 {
    #[inline]
    fn as_mut(&mut self) -> &mut [f32; 4] {
        unsafe { &mut *(self as *mut Self as *mut [f32; 4]) }
    }
}

impl Add<Mat2> for Mat2 {
    type Output = Self;
    #[inline]
    fn add(self, other: Self) -> Self {
        self.add_mat2(&other)
    }
}

impl Sub<Mat2> for Mat2 {
    type Output = Self;
    #[inline]
    fn sub(self, other: Self) -> Self {
        self.sub_mat2(&other)
    }
}

impl Mul<Mat2> for Mat2 {
    type Output = Self;
    #[inline]
    fn mul(self, other: Self) -> Self {
        self.mul_mat2(&other)
    }
}

impl Mul<Vec2> for Mat2 {
    type Output = Vec2;
    #[inline]
    fn mul(self, other: Vec2) -> Vec2 {
        self.mul_vec2(other)
    }
}

impl Mul<Mat2> for f32 {
    type Output = Mat2;
    #[inline]
    fn mul(self, other: Mat2) -> Mat2 {
        other.mul_scalar(self)
    }
}

impl Mul<f32> for Mat2 {
    type Output = Self;
    #[inline]
    fn mul(self, other: f32) -> Self {
        self.mul_scalar(other)
    }
}