1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
use super::{scalar_sin_cos, Vec2, Vec4};

#[cfg(feature = "rand")]
use rand::{
    distributions::{Distribution, Standard},
    Rng,
};

use std::{
    fmt,
    ops::{Add, Mul, Sub},
};

#[inline]
pub fn mat2(x_axis: Vec2, y_axis: Vec2) -> Mat2 {
    Mat2::from_cols(x_axis, y_axis)
}

/// A 2x2 column major matrix.
#[derive(Clone, Copy, PartialEq, PartialOrd, Debug)]
pub struct Mat2(pub(crate) Vec4);

impl Default for Mat2 {
    #[inline]
    fn default() -> Self {
        Self::identity()
    }
}

impl fmt::Display for Mat2 {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "[{}, {}]", self.x_axis(), self.y_axis())
    }
}

impl Mat2 {
    #[inline]
    pub fn zero() -> Self {
        Mat2(Vec4::zero())
    }

    #[inline]
    pub fn identity() -> Self {
        Self(Vec4::new(1.0, 0.0, 0.0, 1.0))
    }

    #[deprecated(since = "0.7.2", note = "please use `Mat4::from_cols` instead")]
    #[inline]
    pub fn new(x_axis: Vec2, y_axis: Vec2) -> Self {
        Self::from_cols(x_axis, y_axis)
    }

    /// Creates a new `Mat2` from four column vectors.
    #[inline]
    pub fn from_cols(x_axis: Vec2, y_axis: Vec2) -> Self {
        Self(Vec4::new(x_axis.x(), x_axis.y(), y_axis.x(), y_axis.y()))
    }

    /// Creates a new `Mat2` from a `[f32; 4]` stored in column major order.
    /// If your data is stored in row major you will need to `transpose` the resulting `Mat2`.
    #[inline]
    pub fn from_cols_array(m: &[f32; 4]) -> Self {
        Mat2(Vec4::new(m[0], m[1], m[2], m[3]))
    }

    /// Creates a new `[f32; 4]` storing data in column major order.
    /// If you require data in row major order `transpose` the `Mat2` first.
    #[inline]
    pub fn to_cols_array(&self) -> [f32; 4] {
        self.0.into()
    }

    /// Creates a new `Mat2` from a `[[f32; 2]; 2]` stored in column major order.
    /// If your data is in row major order you will need to `transpose` the resulting `Mat2`.
    #[inline]
    pub fn from_cols_array_2d(m: &[[f32; 2]; 2]) -> Self {
        Mat2(Vec4::new(m[0][0], m[0][1], m[1][0], m[1][1]))
    }

    /// Creates a new `[[f32; 2]; 2]` storing data in column major order.
    /// If you require data in row major order `transpose` the `Mat2` first.
    #[inline]
    pub fn to_cols_array_2d(&self) -> [[f32; 2]; 2] {
        let (x0, y0, x1, y1) = self.0.into();
        [[x0, y0], [x1, y1]]
    }

    /// Create a 2x2 matrix containing scale and rotation (in radians).
    #[inline]
    pub fn from_scale_angle(scale: Vec2, angle: f32) -> Self {
        let (sin, cos) = scalar_sin_cos(angle);
        let (scale_x, scale_y) = scale.into();
        Self(Vec4::new(
            cos * scale_x,
            sin * scale_x,
            -sin * scale_y,
            cos * scale_y,
        ))
    }

    /// Create a 2x2 matrix containing a rotation (in radians).
    #[inline]
    pub fn from_angle(angle: f32) -> Self {
        let (sin, cos) = scalar_sin_cos(angle);
        Self(Vec4::new(cos, sin, -sin, cos))
    }

    #[inline]
    pub fn from_scale(scale: Vec2) -> Self {
        let (x, y) = scale.into();
        Self(Vec4::new(x, 0.0, 0.0, y))
    }

    #[inline]
    pub fn set_x_axis(&mut self, x: Vec2) {
        let m = self.0.as_mut();
        m[0] = x.x();
        m[1] = x.y();
    }

    #[inline]
    pub fn set_y_axis(&mut self, y: Vec2) {
        let m = self.0.as_mut();
        m[2] = y.x();
        m[3] = y.y();
    }

    #[inline]
    pub fn x_axis(&self) -> Vec2 {
        let (x, y, _, _) = self.0.into();
        Vec2::new(x, y)
    }

    #[inline]
    pub fn y_axis(&self) -> Vec2 {
        let (_, _, x, y) = self.0.into();
        Vec2::new(x, y)
    }

    #[inline]
    pub fn transpose(&self) -> Self {
        let (m00, m01, m10, m11) = self.0.into();
        Self(Vec4::new(m00, m10, m01, m11))
    }

    #[inline]
    pub fn determinant(&self) -> f32 {
        // TODO: SSE2
        let (a, b, c, d) = self.0.into();
        a * d - b * c
    }

    #[inline]
    pub fn inverse(&self) -> Self {
        // TODO: SSE2
        let (a, b, c, d) = self.0.into();
        let det = a * d - b * c;
        glam_assert!(det != 0.0);
        let tmp = Vec4::new(1.0, -1.0, -1.0, 1.0) / det;
        Self(Vec4::new(d, b, c, a) * tmp)
    }

    #[inline]
    pub fn mul_vec2(&self, other: Vec2) -> Vec2 {
        // TODO: SSE2
        let other = Vec4::new(other.x(), other.x(), other.y(), other.y());
        let tmp = self.0 * other;
        let (x0, y0, x1, y1) = tmp.into();
        Vec2::new(x0 + x1, y0 + y1)
    }

    #[inline]
    pub fn mul_mat2(&self, other: &Self) -> Self {
        // TODO: SSE2
        let (x0, y0, x1, y1) = other.0.into();
        Mat2::from_cols(
            self.mul_vec2(Vec2::new(x0, y0)),
            self.mul_vec2(Vec2::new(x1, y1)),
        )
    }

    #[inline]
    pub fn add_mat2(&self, other: &Self) -> Self {
        Mat2(self.0 + other.0)
    }

    #[inline]
    pub fn sub_mat2(&self, other: &Self) -> Self {
        Mat2(self.0 - other.0)
    }

    #[inline]
    pub fn mul_scalar(&self, other: f32) -> Self {
        let s = Vec4::splat(other);
        Mat2(self.0 * s)
    }

    /// Returns true if the absolute difference of all elements between `self`
    /// and `other` is less than or equal to `max_abs_diff`.
    ///
    /// This can be used to compare if two `Mat2`'s contain similar elements. It
    /// works best when comparing with a known value. The `max_abs_diff` that
    /// should be used used depends on the values being compared against.
    ///
    /// For more on floating point comparisons see
    /// https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
    #[inline]
    pub fn abs_diff_eq(&self, other: Self, max_abs_diff: f32) -> bool {
        self.0.abs_diff_eq(other.0, max_abs_diff)
    }
}

#[cfg(feature = "rand")]
impl Distribution<Mat2> for Standard {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Mat2 {
        Mat2::from_cols_array(&rng.gen())
    }
}

impl AsRef<[f32; 4]> for Mat2 {
    #[inline]
    fn as_ref(&self) -> &[f32; 4] {
        unsafe { &*(self as *const Self as *const [f32; 4]) }
    }
}

impl AsMut<[f32; 4]> for Mat2 {
    #[inline]
    fn as_mut(&mut self) -> &mut [f32; 4] {
        unsafe { &mut *(self as *mut Self as *mut [f32; 4]) }
    }
}

impl Add<Mat2> for Mat2 {
    type Output = Self;
    #[inline]
    fn add(self, other: Self) -> Self {
        self.add_mat2(&other)
    }
}

impl Sub<Mat2> for Mat2 {
    type Output = Self;
    #[inline]
    fn sub(self, other: Self) -> Self {
        self.sub_mat2(&other)
    }
}

impl Mul<Mat2> for Mat2 {
    type Output = Self;
    #[inline]
    fn mul(self, other: Self) -> Self {
        self.mul_mat2(&other)
    }
}

impl Mul<Vec2> for Mat2 {
    type Output = Vec2;
    #[inline]
    fn mul(self, other: Vec2) -> Vec2 {
        self.mul_vec2(other)
    }
}

impl Mul<Mat2> for f32 {
    type Output = Mat2;
    #[inline]
    fn mul(self, other: Mat2) -> Mat2 {
        other.mul_scalar(self)
    }
}

impl Mul<f32> for Mat2 {
    type Output = Self;
    #[inline]
    fn mul(self, other: f32) -> Self {
        self.mul_scalar(other)
    }
}