1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
// Generated from vec.rs.tera template. Edit the template, not the generated file.

use crate::{BVec2, Vec3};

#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};

#[cfg(feature = "libm")]
#[allow(unused_imports)]
use num_traits::Float;

/// Creates a 2-dimensional vector.
#[inline(always)]
pub const fn vec2(x: f32, y: f32) -> Vec2 {
    Vec2::new(x, y)
}

/// A 2-dimensional vector.
#[derive(Clone, Copy, PartialEq)]
#[cfg_attr(feature = "cuda", repr(align(8)))]
#[cfg_attr(not(target_arch = "spirv"), repr(C))]
#[cfg_attr(target_arch = "spirv", repr(simd))]
pub struct Vec2 {
    pub x: f32,
    pub y: f32,
}

impl Vec2 {
    /// All zeroes.
    pub const ZERO: Self = Self::splat(0.0);

    /// All ones.
    pub const ONE: Self = Self::splat(1.0);

    /// All negative ones.
    pub const NEG_ONE: Self = Self::splat(-1.0);

    /// All NAN.
    pub const NAN: Self = Self::splat(f32::NAN);

    /// A unit-length vector pointing along the positive X axis.
    pub const X: Self = Self::new(1.0, 0.0);

    /// A unit-length vector pointing along the positive Y axis.
    pub const Y: Self = Self::new(0.0, 1.0);

    /// A unit-length vector pointing along the negative X axis.
    pub const NEG_X: Self = Self::new(-1.0, 0.0);

    /// A unit-length vector pointing along the negative Y axis.
    pub const NEG_Y: Self = Self::new(0.0, -1.0);

    /// The unit axes.
    pub const AXES: [Self; 2] = [Self::X, Self::Y];

    /// Creates a new vector.
    #[inline(always)]
    pub const fn new(x: f32, y: f32) -> Self {
        Self { x, y }
    }

    /// Creates a vector with all elements set to `v`.
    #[inline]
    pub const fn splat(v: f32) -> Self {
        Self { x: v, y: v }
    }

    /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
    /// for each element of `self`.
    ///
    /// A true element in the mask uses the corresponding element from `if_true`, and false
    /// uses the element from `if_false`.
    #[inline]
    pub fn select(mask: BVec2, if_true: Self, if_false: Self) -> Self {
        Self {
            x: if mask.x { if_true.x } else { if_false.x },
            y: if mask.y { if_true.y } else { if_false.y },
        }
    }

    /// Creates a new vector from an array.
    #[inline]
    pub const fn from_array(a: [f32; 2]) -> Self {
        Self::new(a[0], a[1])
    }

    /// `[x, y]`
    #[inline]
    pub const fn to_array(&self) -> [f32; 2] {
        [self.x, self.y]
    }

    /// Creates a vector from the first 2 values in `slice`.
    ///
    /// # Panics
    ///
    /// Panics if `slice` is less than 2 elements long.
    #[inline]
    pub const fn from_slice(slice: &[f32]) -> Self {
        Self::new(slice[0], slice[1])
    }

    /// Writes the elements of `self` to the first 2 elements in `slice`.
    ///
    /// # Panics
    ///
    /// Panics if `slice` is less than 2 elements long.
    #[inline]
    pub fn write_to_slice(self, slice: &mut [f32]) {
        slice[0] = self.x;
        slice[1] = self.y;
    }

    /// Creates a 3D vector from `self` and the given `z` value.
    #[inline]
    pub const fn extend(self, z: f32) -> Vec3 {
        Vec3::new(self.x, self.y, z)
    }

    /// Computes the dot product of `self` and `rhs`.
    #[inline]
    pub fn dot(self, rhs: Self) -> f32 {
        (self.x * rhs.x) + (self.y * rhs.y)
    }

    /// Returns a vector containing the minimum values for each element of `self` and `rhs`.
    ///
    /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
    #[inline]
    pub fn min(self, rhs: Self) -> Self {
        Self {
            x: self.x.min(rhs.x),
            y: self.y.min(rhs.y),
        }
    }

    /// Returns a vector containing the maximum values for each element of `self` and `rhs`.
    ///
    /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
    #[inline]
    pub fn max(self, rhs: Self) -> Self {
        Self {
            x: self.x.max(rhs.x),
            y: self.y.max(rhs.y),
        }
    }

    /// Component-wise clamping of values, similar to [`f32::clamp`].
    ///
    /// Each element in `min` must be less-or-equal to the corresponding element in `max`.
    ///
    /// # Panics
    ///
    /// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
    #[inline]
    pub fn clamp(self, min: Self, max: Self) -> Self {
        glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
        self.max(min).min(max)
    }

    /// Returns the horizontal minimum of `self`.
    ///
    /// In other words this computes `min(x, y, ..)`.
    #[inline]
    pub fn min_element(self) -> f32 {
        self.x.min(self.y)
    }

    /// Returns the horizontal maximum of `self`.
    ///
    /// In other words this computes `max(x, y, ..)`.
    #[inline]
    pub fn max_element(self) -> f32 {
        self.x.max(self.y)
    }

    /// Returns a vector mask containing the result of a `==` comparison for each element of
    /// `self` and `rhs`.
    ///
    /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
    /// elements.
    #[inline]
    pub fn cmpeq(self, rhs: Self) -> BVec2 {
        BVec2::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y))
    }

    /// Returns a vector mask containing the result of a `!=` comparison for each element of
    /// `self` and `rhs`.
    ///
    /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
    /// elements.
    #[inline]
    pub fn cmpne(self, rhs: Self) -> BVec2 {
        BVec2::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y))
    }

    /// Returns a vector mask containing the result of a `>=` comparison for each element of
    /// `self` and `rhs`.
    ///
    /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
    /// elements.
    #[inline]
    pub fn cmpge(self, rhs: Self) -> BVec2 {
        BVec2::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y))
    }

    /// Returns a vector mask containing the result of a `>` comparison for each element of
    /// `self` and `rhs`.
    ///
    /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
    /// elements.
    #[inline]
    pub fn cmpgt(self, rhs: Self) -> BVec2 {
        BVec2::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y))
    }

    /// Returns a vector mask containing the result of a `<=` comparison for each element of
    /// `self` and `rhs`.
    ///
    /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
    /// elements.
    #[inline]
    pub fn cmple(self, rhs: Self) -> BVec2 {
        BVec2::new(self.x.le(&rhs.x), self.y.le(&rhs.y))
    }

    /// Returns a vector mask containing the result of a `<` comparison for each element of
    /// `self` and `rhs`.
    ///
    /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
    /// elements.
    #[inline]
    pub fn cmplt(self, rhs: Self) -> BVec2 {
        BVec2::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y))
    }

    /// Returns a vector containing the absolute value of each element of `self`.
    #[inline]
    pub fn abs(self) -> Self {
        Self {
            x: self.x.abs(),
            y: self.y.abs(),
        }
    }

    /// Returns a vector with elements representing the sign of `self`.
    ///
    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
    /// - `NAN` if the number is `NAN`
    #[inline]
    pub fn signum(self) -> Self {
        Self {
            x: self.x.signum(),
            y: self.y.signum(),
        }
    }

    /// Returns `true` if, and only if, all elements are finite.  If any element is either
    /// `NaN`, positive or negative infinity, this will return `false`.
    #[inline]
    pub fn is_finite(self) -> bool {
        self.x.is_finite() && self.y.is_finite()
    }

    /// Returns `true` if any elements are `NaN`.
    #[inline]
    pub fn is_nan(self) -> bool {
        self.x.is_nan() || self.y.is_nan()
    }

    /// Performs `is_nan` on each element of self, returning a vector mask of the results.
    ///
    /// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`.
    #[inline]
    pub fn is_nan_mask(self) -> BVec2 {
        BVec2::new(self.x.is_nan(), self.y.is_nan())
    }

    /// Computes the length of `self`.
    #[doc(alias = "magnitude")]
    #[inline]
    pub fn length(self) -> f32 {
        self.dot(self).sqrt()
    }

    /// Computes the squared length of `self`.
    ///
    /// This is faster than `length()` as it avoids a square root operation.
    #[doc(alias = "magnitude2")]
    #[inline]
    pub fn length_squared(self) -> f32 {
        self.dot(self)
    }

    /// Computes `1.0 / length()`.
    ///
    /// For valid results, `self` must _not_ be of length zero.
    #[inline]
    pub fn length_recip(self) -> f32 {
        self.length().recip()
    }

    /// Computes the Euclidean distance between two points in space.
    #[inline]
    pub fn distance(self, rhs: Self) -> f32 {
        (self - rhs).length()
    }

    /// Compute the squared euclidean distance between two points in space.
    #[inline]
    pub fn distance_squared(self, rhs: Self) -> f32 {
        (self - rhs).length_squared()
    }

    /// Returns `self` normalized to length 1.0.
    ///
    /// For valid results, `self` must _not_ be of length zero, nor very close to zero.
    ///
    /// See also [`Self::try_normalize`] and [`Self::normalize_or_zero`].
    ///
    /// Panics
    ///
    /// Will panic if `self` is zero length when `glam_assert` is enabled.
    #[must_use]
    #[inline]
    pub fn normalize(self) -> Self {
        #[allow(clippy::let_and_return)]
        let normalized = self.mul(self.length_recip());
        glam_assert!(normalized.is_finite());
        normalized
    }

    /// Returns `self` normalized to length 1.0 if possible, else returns `None`.
    ///
    /// In particular, if the input is zero (or very close to zero), or non-finite,
    /// the result of this operation will be `None`.
    ///
    /// See also [`Self::normalize_or_zero`].
    #[must_use]
    #[inline]
    pub fn try_normalize(self) -> Option<Self> {
        let rcp = self.length_recip();
        if rcp.is_finite() && rcp > 0.0 {
            Some(self * rcp)
        } else {
            None
        }
    }

    /// Returns `self` normalized to length 1.0 if possible, else returns zero.
    ///
    /// In particular, if the input is zero (or very close to zero), or non-finite,
    /// the result of this operation will be zero.
    ///
    /// See also [`Self::try_normalize`].
    #[must_use]
    #[inline]
    pub fn normalize_or_zero(self) -> Self {
        let rcp = self.length_recip();
        if rcp.is_finite() && rcp > 0.0 {
            self * rcp
        } else {
            Self::ZERO
        }
    }

    /// Returns whether `self` is length `1.0` or not.
    ///
    /// Uses a precision threshold of `1e-6`.
    #[inline]
    pub fn is_normalized(self) -> bool {
        // TODO: do something with epsilon
        (self.length_squared() - 1.0).abs() <= 1e-4
    }

    /// Returns the vector projection of `self` onto `rhs`.
    ///
    /// `rhs` must be of non-zero length.
    ///
    /// # Panics
    ///
    /// Will panic if `rhs` is zero length when `glam_assert` is enabled.
    #[must_use]
    #[inline]
    pub fn project_onto(self, rhs: Self) -> Self {
        let other_len_sq_rcp = rhs.dot(rhs).recip();
        glam_assert!(other_len_sq_rcp.is_finite());
        rhs * self.dot(rhs) * other_len_sq_rcp
    }

    /// Returns the vector rejection of `self` from `rhs`.
    ///
    /// The vector rejection is the vector perpendicular to the projection of `self` onto
    /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
    ///
    /// `rhs` must be of non-zero length.
    ///
    /// # Panics
    ///
    /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
    #[must_use]
    #[inline]
    pub fn reject_from(self, rhs: Self) -> Self {
        self - self.project_onto(rhs)
    }

    /// Returns the vector projection of `self` onto `rhs`.
    ///
    /// `rhs` must be normalized.
    ///
    /// # Panics
    ///
    /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
    #[must_use]
    #[inline]
    pub fn project_onto_normalized(self, rhs: Self) -> Self {
        glam_assert!(rhs.is_normalized());
        rhs * self.dot(rhs)
    }

    /// Returns the vector rejection of `self` from `rhs`.
    ///
    /// The vector rejection is the vector perpendicular to the projection of `self` onto
    /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
    ///
    /// `rhs` must be normalized.
    ///
    /// # Panics
    ///
    /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
    #[must_use]
    #[inline]
    pub fn reject_from_normalized(self, rhs: Self) -> Self {
        self - self.project_onto_normalized(rhs)
    }

    /// Returns a vector containing the nearest integer to a number for each element of `self`.
    /// Round half-way cases away from 0.0.
    #[inline]
    pub fn round(self) -> Self {
        Self {
            x: self.x.round(),
            y: self.y.round(),
        }
    }

    /// Returns a vector containing the largest integer less than or equal to a number for each
    /// element of `self`.
    #[inline]
    pub fn floor(self) -> Self {
        Self {
            x: self.x.floor(),
            y: self.y.floor(),
        }
    }

    /// Returns a vector containing the smallest integer greater than or equal to a number for
    /// each element of `self`.
    #[inline]
    pub fn ceil(self) -> Self {
        Self {
            x: self.x.ceil(),
            y: self.y.ceil(),
        }
    }

    /// Returns a vector containing the fractional part of the vector, e.g. `self -
    /// self.floor()`.
    ///
    /// Note that this is fast but not precise for large numbers.
    #[inline]
    pub fn fract(self) -> Self {
        self - self.floor()
    }

    /// Returns a vector containing `e^self` (the exponential function) for each element of
    /// `self`.
    #[inline]
    pub fn exp(self) -> Self {
        Self::new(self.x.exp(), self.y.exp())
    }

    /// Returns a vector containing each element of `self` raised to the power of `n`.
    #[inline]
    pub fn powf(self, n: f32) -> Self {
        Self::new(self.x.powf(n), self.y.powf(n))
    }

    /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
    #[inline]
    pub fn recip(self) -> Self {
        Self {
            x: self.x.recip(),
            y: self.y.recip(),
        }
    }

    /// Performs a linear interpolation between `self` and `rhs` based on the value `s`.
    ///
    /// When `s` is `0.0`, the result will be equal to `self`.  When `s` is `1.0`, the result
    /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
    /// extrapolated.
    #[doc(alias = "mix")]
    #[inline]
    pub fn lerp(self, rhs: Self, s: f32) -> Self {
        self + ((rhs - self) * s)
    }

    /// Returns true if the absolute difference of all elements between `self` and `rhs` is
    /// less than or equal to `max_abs_diff`.
    ///
    /// This can be used to compare if two vectors contain similar elements. It works best when
    /// comparing with a known value. The `max_abs_diff` that should be used used depends on
    /// the values being compared against.
    ///
    /// For more see
    /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
    #[inline]
    pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
        self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
    }

    /// Returns a vector with a length no less than `min` and no more than `max`
    ///
    /// # Panics
    ///
    /// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
    #[inline]
    pub fn clamp_length(self, min: f32, max: f32) -> Self {
        glam_assert!(min <= max);
        let length_sq = self.length_squared();
        if length_sq < min * min {
            self * (length_sq.sqrt().recip() * min)
        } else if length_sq > max * max {
            self * (length_sq.sqrt().recip() * max)
        } else {
            self
        }
    }

    /// Returns a vector with a length no more than `max`
    pub fn clamp_length_max(self, max: f32) -> Self {
        let length_sq = self.length_squared();
        if length_sq > max * max {
            self * (length_sq.sqrt().recip() * max)
        } else {
            self
        }
    }

    /// Returns a vector with a length no less than `min`
    pub fn clamp_length_min(self, min: f32) -> Self {
        let length_sq = self.length_squared();
        if length_sq < min * min {
            self * (length_sq.sqrt().recip() * min)
        } else {
            self
        }
    }

    /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding
    /// error, yielding a more accurate result than an unfused multiply-add.
    ///
    /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
    /// architecture has a dedicated fma CPU instruction. However, this is not always true,
    /// and will be heavily dependant on designing algorithms with specific target hardware in
    /// mind.
    #[inline]
    pub fn mul_add(self, a: Self, b: Self) -> Self {
        Self::new(self.x.mul_add(a.x, b.x), self.y.mul_add(a.y, b.y))
    }

    /// Creates a 2D vector containing `[angle.cos(), angle.sin()]`. This can be used in
    /// conjunction with the `rotate` method, e.g. `Vec2::from_angle(PI).rotate(Vec2::Y)` will
    /// create the vector [-1, 0] and rotate `Vec2::Y` around it returning `-Vec2::Y`.
    #[inline]
    pub fn from_angle(angle: f32) -> Self {
        let (sin, cos) = angle.sin_cos();
        Self { x: cos, y: sin }
    }

    /// Returns the angle (in radians) between `self` and `rhs`.
    ///
    /// The input vectors do not need to be unit length however they must be non-zero.
    #[inline]
    pub fn angle_between(self, rhs: Self) -> f32 {
        use crate::FloatEx;
        let angle =
            (self.dot(rhs) / (self.length_squared() * rhs.length_squared()).sqrt()).acos_approx();

        angle * self.perp_dot(rhs).signum()
    }

    /// Returns a vector that is equal to `self` rotated by 90 degrees.
    #[inline]
    pub fn perp(self) -> Self {
        Self {
            x: -self.y,
            y: self.x,
        }
    }

    /// The perpendicular dot product of `self` and `rhs`.
    /// Also known as the wedge product, 2D cross product, and determinant.
    #[doc(alias = "wedge")]
    #[doc(alias = "cross")]
    #[doc(alias = "determinant")]
    #[inline]
    pub fn perp_dot(self, rhs: Self) -> f32 {
        (self.x * rhs.y) - (self.y * rhs.x)
    }

    /// Returns `rhs` rotated by the angle of `self`. If `self` is normalized,
    /// then this just rotation. This is what you usually want. Otherwise,
    /// it will be like a rotation with a multiplication by `self`'s length.
    #[must_use]
    #[inline]
    pub fn rotate(self, rhs: Self) -> Self {
        Self {
            x: self.x * rhs.x - self.y * rhs.y,
            y: self.y * rhs.x + self.x * rhs.y,
        }
    }

    /// Casts all elements of `self` to `f64`.
    #[inline]
    pub fn as_dvec2(&self) -> crate::DVec2 {
        crate::DVec2::new(self.x as f64, self.y as f64)
    }

    /// Casts all elements of `self` to `i32`.
    #[inline]
    pub fn as_ivec2(&self) -> crate::IVec2 {
        crate::IVec2::new(self.x as i32, self.y as i32)
    }

    /// Casts all elements of `self` to `u32`.
    #[inline]
    pub fn as_uvec2(&self) -> crate::UVec2 {
        crate::UVec2::new(self.x as u32, self.y as u32)
    }
}

impl Default for Vec2 {
    #[inline(always)]
    fn default() -> Self {
        Self::ZERO
    }
}

impl Div<Vec2> for Vec2 {
    type Output = Self;
    #[inline]
    fn div(self, rhs: Self) -> Self {
        Self {
            x: self.x.div(rhs.x),
            y: self.y.div(rhs.y),
        }
    }
}

impl DivAssign<Vec2> for Vec2 {
    #[inline]
    fn div_assign(&mut self, rhs: Self) {
        self.x.div_assign(rhs.x);
        self.y.div_assign(rhs.y);
    }
}

impl Div<f32> for Vec2 {
    type Output = Self;
    #[inline]
    fn div(self, rhs: f32) -> Self {
        Self {
            x: self.x.div(rhs),
            y: self.y.div(rhs),
        }
    }
}

impl DivAssign<f32> for Vec2 {
    #[inline]
    fn div_assign(&mut self, rhs: f32) {
        self.x.div_assign(rhs);
        self.y.div_assign(rhs);
    }
}

impl Div<Vec2> for f32 {
    type Output = Vec2;
    #[inline]
    fn div(self, rhs: Vec2) -> Vec2 {
        Vec2 {
            x: self.div(rhs.x),
            y: self.div(rhs.y),
        }
    }
}

impl Mul<Vec2> for Vec2 {
    type Output = Self;
    #[inline]
    fn mul(self, rhs: Self) -> Self {
        Self {
            x: self.x.mul(rhs.x),
            y: self.y.mul(rhs.y),
        }
    }
}

impl MulAssign<Vec2> for Vec2 {
    #[inline]
    fn mul_assign(&mut self, rhs: Self) {
        self.x.mul_assign(rhs.x);
        self.y.mul_assign(rhs.y);
    }
}

impl Mul<f32> for Vec2 {
    type Output = Self;
    #[inline]
    fn mul(self, rhs: f32) -> Self {
        Self {
            x: self.x.mul(rhs),
            y: self.y.mul(rhs),
        }
    }
}

impl MulAssign<f32> for Vec2 {
    #[inline]
    fn mul_assign(&mut self, rhs: f32) {
        self.x.mul_assign(rhs);
        self.y.mul_assign(rhs);
    }
}

impl Mul<Vec2> for f32 {
    type Output = Vec2;
    #[inline]
    fn mul(self, rhs: Vec2) -> Vec2 {
        Vec2 {
            x: self.mul(rhs.x),
            y: self.mul(rhs.y),
        }
    }
}

impl Add<Vec2> for Vec2 {
    type Output = Self;
    #[inline]
    fn add(self, rhs: Self) -> Self {
        Self {
            x: self.x.add(rhs.x),
            y: self.y.add(rhs.y),
        }
    }
}

impl AddAssign<Vec2> for Vec2 {
    #[inline]
    fn add_assign(&mut self, rhs: Self) {
        self.x.add_assign(rhs.x);
        self.y.add_assign(rhs.y);
    }
}

impl Add<f32> for Vec2 {
    type Output = Self;
    #[inline]
    fn add(self, rhs: f32) -> Self {
        Self {
            x: self.x.add(rhs),
            y: self.y.add(rhs),
        }
    }
}

impl AddAssign<f32> for Vec2 {
    #[inline]
    fn add_assign(&mut self, rhs: f32) {
        self.x.add_assign(rhs);
        self.y.add_assign(rhs);
    }
}

impl Add<Vec2> for f32 {
    type Output = Vec2;
    #[inline]
    fn add(self, rhs: Vec2) -> Vec2 {
        Vec2 {
            x: self.add(rhs.x),
            y: self.add(rhs.y),
        }
    }
}

impl Sub<Vec2> for Vec2 {
    type Output = Self;
    #[inline]
    fn sub(self, rhs: Self) -> Self {
        Self {
            x: self.x.sub(rhs.x),
            y: self.y.sub(rhs.y),
        }
    }
}

impl SubAssign<Vec2> for Vec2 {
    #[inline]
    fn sub_assign(&mut self, rhs: Vec2) {
        self.x.sub_assign(rhs.x);
        self.y.sub_assign(rhs.y);
    }
}

impl Sub<f32> for Vec2 {
    type Output = Self;
    #[inline]
    fn sub(self, rhs: f32) -> Self {
        Self {
            x: self.x.sub(rhs),
            y: self.y.sub(rhs),
        }
    }
}

impl SubAssign<f32> for Vec2 {
    #[inline]
    fn sub_assign(&mut self, rhs: f32) {
        self.x.sub_assign(rhs);
        self.y.sub_assign(rhs);
    }
}

impl Sub<Vec2> for f32 {
    type Output = Vec2;
    #[inline]
    fn sub(self, rhs: Vec2) -> Vec2 {
        Vec2 {
            x: self.sub(rhs.x),
            y: self.sub(rhs.y),
        }
    }
}

impl Rem<Vec2> for Vec2 {
    type Output = Self;
    #[inline]
    fn rem(self, rhs: Self) -> Self {
        Self {
            x: self.x.rem(rhs.x),
            y: self.y.rem(rhs.y),
        }
    }
}

impl RemAssign<Vec2> for Vec2 {
    #[inline]
    fn rem_assign(&mut self, rhs: Self) {
        self.x.rem_assign(rhs.x);
        self.y.rem_assign(rhs.y);
    }
}

impl Rem<f32> for Vec2 {
    type Output = Self;
    #[inline]
    fn rem(self, rhs: f32) -> Self {
        Self {
            x: self.x.rem(rhs),
            y: self.y.rem(rhs),
        }
    }
}

impl RemAssign<f32> for Vec2 {
    #[inline]
    fn rem_assign(&mut self, rhs: f32) {
        self.x.rem_assign(rhs);
        self.y.rem_assign(rhs);
    }
}

impl Rem<Vec2> for f32 {
    type Output = Vec2;
    #[inline]
    fn rem(self, rhs: Vec2) -> Vec2 {
        Vec2 {
            x: self.rem(rhs.x),
            y: self.rem(rhs.y),
        }
    }
}

#[cfg(not(target_arch = "spirv"))]
impl AsRef<[f32; 2]> for Vec2 {
    #[inline]
    fn as_ref(&self) -> &[f32; 2] {
        unsafe { &*(self as *const Vec2 as *const [f32; 2]) }
    }
}

#[cfg(not(target_arch = "spirv"))]
impl AsMut<[f32; 2]> for Vec2 {
    #[inline]
    fn as_mut(&mut self) -> &mut [f32; 2] {
        unsafe { &mut *(self as *mut Vec2 as *mut [f32; 2]) }
    }
}

impl<'a> Sum<&'a Self> for Vec2 {
    #[inline]
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = &'a Self>,
    {
        iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
    }
}

impl<'a> Product<&'a Self> for Vec2 {
    #[inline]
    fn product<I>(iter: I) -> Self
    where
        I: Iterator<Item = &'a Self>,
    {
        iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
    }
}

impl Neg for Vec2 {
    type Output = Self;
    #[inline]
    fn neg(self) -> Self {
        Self {
            x: self.x.neg(),
            y: self.y.neg(),
        }
    }
}

impl Index<usize> for Vec2 {
    type Output = f32;
    #[inline]
    fn index(&self, index: usize) -> &Self::Output {
        match index {
            0 => &self.x,
            1 => &self.y,
            _ => panic!("index out of bounds"),
        }
    }
}

impl IndexMut<usize> for Vec2 {
    #[inline]
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        match index {
            0 => &mut self.x,
            1 => &mut self.y,
            _ => panic!("index out of bounds"),
        }
    }
}

#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for Vec2 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "[{}, {}]", self.x, self.y)
    }
}

#[cfg(not(target_arch = "spirv"))]
impl fmt::Debug for Vec2 {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_tuple(stringify!(Vec2))
            .field(&self.x)
            .field(&self.y)
            .finish()
    }
}

impl From<[f32; 2]> for Vec2 {
    #[inline]
    fn from(a: [f32; 2]) -> Self {
        Self::new(a[0], a[1])
    }
}

impl From<Vec2> for [f32; 2] {
    #[inline]
    fn from(v: Vec2) -> Self {
        [v.x, v.y]
    }
}

impl From<(f32, f32)> for Vec2 {
    #[inline]
    fn from(t: (f32, f32)) -> Self {
        Self::new(t.0, t.1)
    }
}

impl From<Vec2> for (f32, f32) {
    #[inline]
    fn from(v: Vec2) -> Self {
        (v.x, v.y)
    }
}