1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;

union UnionCast {
    u32x4: [u32; 4],
    f32x4: [f32; 4],
    m128: __m128,
}

pub const fn m128_from_f32x4(f32x4: [f32; 4]) -> __m128 {
    unsafe { UnionCast { f32x4 }.m128 }
}

const fn m128_from_u32x4(u32x4: [u32; 4]) -> __m128 {
    unsafe { UnionCast { u32x4 }.m128 }
}

const PS_INV_SIGN_MASK: __m128 = m128_from_u32x4([!0x8000_0000; 4]);
const PS_SIGN_MASK: __m128 = m128_from_u32x4([0x8000_0000; 4]);
const PS_NO_FRACTION: __m128 = m128_from_f32x4([8388608.0; 4]);
const PS_NEGATIVE_ZERO: __m128 = m128_from_u32x4([0x8000_0000; 4]);
const PS_PI: __m128 = m128_from_f32x4([core::f32::consts::PI; 4]);
const PS_HALF_PI: __m128 = m128_from_f32x4([core::f32::consts::FRAC_PI_2; 4]);
const PS_SIN_COEFFICIENTS0: __m128 =
    m128_from_f32x4([-0.16666667, 0.008_333_331, -0.00019840874, 2.752_556_2e-6]);
const PS_SIN_COEFFICIENTS1: __m128 = m128_from_f32x4([
    -2.388_985_9e-8,
    -0.16665852,      /*Est1*/
    0.008_313_95,     /*Est2*/
    -0.000_185_246_7, /*Est3*/
]);
const PS_ONE: __m128 = m128_from_f32x4([1.0; 4]);
const PS_TWO_PI: __m128 = m128_from_f32x4([core::f32::consts::TAU; 4]);
const PS_RECIPROCAL_TWO_PI: __m128 = m128_from_f32x4([0.159_154_94; 4]);

/// Calculates the vector 3 dot product and returns answer in x lane of __m128.
#[inline(always)]
pub(crate) unsafe fn dot3_in_x(lhs: __m128, rhs: __m128) -> __m128 {
    let x2_y2_z2_w2 = _mm_mul_ps(lhs, rhs);
    let y2_0_0_0 = _mm_shuffle_ps(x2_y2_z2_w2, x2_y2_z2_w2, 0b00_00_00_01);
    let z2_0_0_0 = _mm_shuffle_ps(x2_y2_z2_w2, x2_y2_z2_w2, 0b00_00_00_10);
    let x2y2_0_0_0 = _mm_add_ss(x2_y2_z2_w2, y2_0_0_0);
    _mm_add_ss(x2y2_0_0_0, z2_0_0_0)
}

/// Calculates the vector 4 dot product and returns answer in x lane of __m128.
#[inline(always)]
pub(crate) unsafe fn dot4_in_x(lhs: __m128, rhs: __m128) -> __m128 {
    let x2_y2_z2_w2 = _mm_mul_ps(lhs, rhs);
    let z2_w2_0_0 = _mm_shuffle_ps(x2_y2_z2_w2, x2_y2_z2_w2, 0b00_00_11_10);
    let x2z2_y2w2_0_0 = _mm_add_ps(x2_y2_z2_w2, z2_w2_0_0);
    let y2w2_0_0_0 = _mm_shuffle_ps(x2z2_y2w2_0_0, x2z2_y2w2_0_0, 0b00_00_00_01);
    _mm_add_ps(x2z2_y2w2_0_0, y2w2_0_0_0)
}

#[inline]
pub(crate) unsafe fn dot3(lhs: __m128, rhs: __m128) -> f32 {
    _mm_cvtss_f32(dot3_in_x(lhs, rhs))
}

#[inline]
pub(crate) unsafe fn dot3_into_m128(lhs: __m128, rhs: __m128) -> __m128 {
    let dot_in_x = dot3_in_x(lhs, rhs);
    _mm_shuffle_ps(dot_in_x, dot_in_x, 0b00_00_00_00)
}

#[inline]
pub(crate) unsafe fn dot4(lhs: __m128, rhs: __m128) -> f32 {
    _mm_cvtss_f32(dot4_in_x(lhs, rhs))
}

#[inline]
pub(crate) unsafe fn dot4_into_m128(lhs: __m128, rhs: __m128) -> __m128 {
    let dot_in_x = dot4_in_x(lhs, rhs);
    _mm_shuffle_ps(dot_in_x, dot_in_x, 0b00_00_00_00)
}

#[inline]
pub(crate) unsafe fn m128_floor(v: __m128) -> __m128 {
    // Based on https://github.com/microsoft/DirectXMath `XMVectorFloor`
    // To handle NAN, INF and numbers greater than 8388608, use masking
    let test = _mm_and_si128(_mm_castps_si128(v), _mm_castps_si128(PS_INV_SIGN_MASK));
    let test = _mm_cmplt_epi32(test, _mm_castps_si128(PS_NO_FRACTION));
    // Truncate
    let vint = _mm_cvttps_epi32(v);
    let result = _mm_cvtepi32_ps(vint);
    let larger = _mm_cmpgt_ps(result, v);
    // 0 -> 0, 0xffffffff -> -1.0f
    let larger = _mm_cvtepi32_ps(_mm_castps_si128(larger));
    let result = _mm_add_ps(result, larger);
    // All numbers less than 8388608 will use the round to int
    let result = _mm_and_ps(result, _mm_castsi128_ps(test));
    // All others, use the ORIGINAL value
    let test = _mm_andnot_si128(test, _mm_castps_si128(v));
    _mm_or_ps(result, _mm_castsi128_ps(test))
}

#[inline]
pub(crate) unsafe fn m128_ceil(v: __m128) -> __m128 {
    // Based on https://github.com/microsoft/DirectXMath `XMVectorCeil`
    // To handle NAN, INF and numbers greater than 8388608, use masking
    let test = _mm_and_si128(_mm_castps_si128(v), _mm_castps_si128(PS_INV_SIGN_MASK));
    let test = _mm_cmplt_epi32(test, _mm_castps_si128(PS_NO_FRACTION));
    // Truncate
    let vint = _mm_cvttps_epi32(v);
    let result = _mm_cvtepi32_ps(vint);
    let smaller = _mm_cmplt_ps(result, v);
    // 0 -> 0, 0xffffffff -> -1.0f
    let smaller = _mm_cvtepi32_ps(_mm_castps_si128(smaller));
    let result = _mm_sub_ps(result, smaller);
    // All numbers less than 8388608 will use the round to int
    let result = _mm_and_ps(result, _mm_castsi128_ps(test));
    // All others, use the ORIGINAL value
    let test = _mm_andnot_si128(test, _mm_castps_si128(v));
    _mm_or_ps(result, _mm_castsi128_ps(test))
}

#[inline]
pub(crate) unsafe fn m128_abs(v: __m128) -> __m128 {
    _mm_and_ps(v, _mm_castsi128_ps(_mm_set1_epi32(0x7f_ff_ff_ff)))
}

#[inline(always)]
pub(crate) unsafe fn m128_mul_add(a: __m128, b: __m128, c: __m128) -> __m128 {
    // Only enable fused multiply-adds here if "fast-math" is enabled and the
    // platform supports it. Otherwise this may break cross-platform determinism.
    #[cfg(all(feature = "fast-math", target_feature = "fma"))]
    {
        _mm_fmadd_ps(a, b, c)
    }

    #[cfg(any(not(feature = "fast-math"), not(target_feature = "fma")))]
    {
        _mm_add_ps(_mm_mul_ps(a, b), c)
    }
}

#[inline(always)]
pub(crate) unsafe fn m128_neg_mul_sub(a: __m128, b: __m128, c: __m128) -> __m128 {
    _mm_sub_ps(c, _mm_mul_ps(a, b))
}

#[inline]
pub(crate) unsafe fn m128_round(v: __m128) -> __m128 {
    // Based on https://github.com/microsoft/DirectXMath `XMVectorRound`
    let sign = _mm_and_ps(v, PS_SIGN_MASK);
    let s_magic = _mm_or_ps(PS_NO_FRACTION, sign);
    let r1 = _mm_add_ps(v, s_magic);
    let r1 = _mm_sub_ps(r1, s_magic);
    let r2 = _mm_and_ps(v, PS_INV_SIGN_MASK);
    let mask = _mm_cmple_ps(r2, PS_NO_FRACTION);
    let r2 = _mm_andnot_ps(mask, v);
    let r1 = _mm_and_ps(r1, mask);
    _mm_xor_ps(r1, r2)
}

/// Returns a vector whose components are the corresponding components of Angles modulo 2PI.
#[inline]
pub(crate) unsafe fn m128_mod_angles(angles: __m128) -> __m128 {
    // Based on https://github.com/microsoft/DirectXMath `XMVectorModAngles`
    let v = _mm_mul_ps(angles, PS_RECIPROCAL_TWO_PI);
    let v = m128_round(v);
    m128_neg_mul_sub(PS_TWO_PI, v, angles)
}

/// Computes the sine of the angle in each lane of `v`. Values outside
/// the bounds of PI may produce an increasing error as the input angle
/// drifts from `[-PI, PI]`.
#[inline]
pub(crate) unsafe fn m128_sin(v: __m128) -> __m128 {
    // Based on https://github.com/microsoft/DirectXMath `XMVectorSin`

    // 11-degree minimax approximation

    // Force the value within the bounds of pi
    let mut x = m128_mod_angles(v);

    // Map in [-pi/2,pi/2] with sin(y) = sin(x).
    let sign = _mm_and_ps(x, PS_NEGATIVE_ZERO);
    // pi when x >= 0, -pi when x < 0
    let c = _mm_or_ps(PS_PI, sign);
    // |x|
    let absx = _mm_andnot_ps(sign, x);
    let rflx = _mm_sub_ps(c, x);
    let comp = _mm_cmple_ps(absx, PS_HALF_PI);
    let select0 = _mm_and_ps(comp, x);
    let select1 = _mm_andnot_ps(comp, rflx);
    x = _mm_or_ps(select0, select1);

    let x2 = _mm_mul_ps(x, x);

    // Compute polynomial approximation
    const SC1: __m128 = PS_SIN_COEFFICIENTS1;
    let v_constants_b = _mm_shuffle_ps(SC1, SC1, 0b00_00_00_00);

    const SC0: __m128 = PS_SIN_COEFFICIENTS0;
    let mut v_constants = _mm_shuffle_ps(SC0, SC0, 0b11_11_11_11);
    let mut result = m128_mul_add(v_constants_b, x2, v_constants);

    v_constants = _mm_shuffle_ps(SC0, SC0, 0b10_10_10_10);
    result = m128_mul_add(result, x2, v_constants);

    v_constants = _mm_shuffle_ps(SC0, SC0, 0b01_01_01_01);
    result = m128_mul_add(result, x2, v_constants);

    v_constants = _mm_shuffle_ps(SC0, SC0, 0b00_00_00_00);
    result = m128_mul_add(result, x2, v_constants);

    result = m128_mul_add(result, x2, PS_ONE);
    result = _mm_mul_ps(result, x);

    result
}

#[test]
fn test_sse2_m128_sin() {
    use crate::Vec4;
    use core::f32::consts::PI;

    fn test_sse2_m128_sin_angle(a: f32) {
        let v = unsafe { m128_sin(_mm_set_ps1(a)) };
        let v = Vec4(v);
        let a_sin = a.sin();
        // dbg!((a, a_sin, v));
        assert!(v.abs_diff_eq(Vec4::splat(a_sin), 1e-6));
    }

    let mut a = -PI;
    let end = PI;
    let step = PI / 8192.0;

    while a <= end {
        test_sse2_m128_sin_angle(a);
        a += step;
    }
}