1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
//! Graphics pipeline descriptor.

use crate::{
    image, pass,
    pso::{
        input_assembler::{AttributeDesc, InputAssemblerDesc, VertexBufferDesc},
        output_merger::{ColorBlendDesc, DepthStencilDesc, Face},
        BasePipeline, EntryPoint, PipelineCreationFlags, State,
    },
    Backend,
};

use std::ops::Range;

/// A simple struct describing a rect with integer coordinates.
#[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Rect {
    /// X position.
    pub x: i16,
    /// Y position.
    pub y: i16,
    /// Width.
    pub w: i16,
    /// Height.
    pub h: i16,
}

/// A simple struct describing a rect with integer coordinates.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct ClearRect {
    /// 2D region.
    pub rect: Rect,
    /// Layer range.
    pub layers: Range<image::Layer>,
}

/// A viewport, generally equating to a window on a display.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Viewport {
    /// The viewport boundaries.
    pub rect: Rect,
    /// The viewport depth limits.
    pub depth: Range<f32>,
}

/// A single RGBA float color.
pub type ColorValue = [f32; 4];
/// A single depth value from a depth buffer.
pub type DepthValue = f32;
/// A single value from a stencil buffer.
pub type StencilValue = u32;
/// Baked-in pipeline states.
#[derive(Clone, Debug, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct BakedStates {
    /// Static viewport. TODO: multiple viewports
    pub viewport: Option<Viewport>,
    /// Static scissor. TODO: multiple scissors
    pub scissor: Option<Rect>,
    /// Static blend constant color.
    pub blend_constants: Option<ColorValue>,
    /// Static depth bounds.
    pub depth_bounds: Option<Range<f32>>,
}
#[derive(Debug)]
/// Primitive Assembler describes how input data are fetched in the pipeline and formed into primitives before being sent into the fragment shader.
pub enum PrimitiveAssemblerDesc<'a, B: Backend> {
    /// Vertex based pipeline
    Vertex {
        /// Vertex buffers (IA)
        buffers: &'a [VertexBufferDesc],
        /// Vertex attributes (IA)
        attributes: &'a [AttributeDesc],
        /// Input assembler attributes, describes how
        /// vertices are assembled into primitives (such as triangles).
        input_assembler: InputAssemblerDesc,
        /// A shader that outputs a vertex in a model.
        vertex: EntryPoint<'a, B>,
        /// Tesselation shaders consisting of:
        ///
        /// 1. Hull shader: takes in an input patch (values representing
        /// a small portion of a shape, which may be actual geometry or may
        /// be parameters for creating geometry) and produces one or more
        /// output patches.
        ///
        /// 2. Domain shader: takes in domains produced from a hull shader's output
        /// patches and computes actual vertex positions.
        tessellation: Option<(EntryPoint<'a, B>, EntryPoint<'a, B>)>,
        /// A shader that takes given input vertexes and outputs zero
        /// or more output vertexes.
        geometry: Option<EntryPoint<'a, B>>,
    },
    /// Mesh shading pipeline
    Mesh {
        /// A shader that creates a variable amount of mesh shader
        /// invocations.
        task: Option<EntryPoint<'a, B>>,
        /// A shader of which each workgroup emits zero or
        /// more output primitives and the group of vertices and their
        /// associated data required for each output primitive.
        mesh: EntryPoint<'a, B>,
    },
}
/// A description of all the settings that can be altered
/// when creating a graphics pipeline.
#[derive(Debug)]
pub struct GraphicsPipelineDesc<'a, B: Backend> {
    /// Pipeline label
    pub label: Option<&'a str>,
    /// Primitive assembler
    pub primitive_assembler: PrimitiveAssemblerDesc<'a, B>,
    /// Rasterizer setup
    pub rasterizer: Rasterizer,
    /// A shader that outputs a value for a fragment.
    /// Usually this value is a color that is then displayed as a
    /// pixel on a screen.
    ///
    /// If a fragment shader is omitted, the results of fragment
    /// processing are undefined. Specifically, any fragment color
    /// outputs are considered to have undefined values, and the
    /// fragment depth is considered to be unmodified. This can
    /// be useful for depth-only rendering.
    pub fragment: Option<EntryPoint<'a, B>>,
    /// Description of how blend operations should be performed.
    pub blender: BlendDesc,
    /// Depth stencil (DSV)
    pub depth_stencil: DepthStencilDesc,
    /// Multisampling.
    pub multisampling: Option<Multisampling>,
    /// Static pipeline states.
    pub baked_states: BakedStates,
    /// Pipeline layout.
    pub layout: &'a B::PipelineLayout,
    /// Subpass in which the pipeline can be executed.
    pub subpass: pass::Subpass<'a, B>,
    /// Options that may be set to alter pipeline properties.
    pub flags: PipelineCreationFlags,
    /// The parent pipeline, which may be
    /// `BasePipeline::None`.
    pub parent: BasePipeline<'a, B::GraphicsPipeline>,
}

impl<'a, B: Backend> GraphicsPipelineDesc<'a, B> {
    /// Create a new empty PSO descriptor.
    pub fn new(
        primitive_assembler: PrimitiveAssemblerDesc<'a, B>,
        rasterizer: Rasterizer,
        fragment: Option<EntryPoint<'a, B>>,
        layout: &'a B::PipelineLayout,
        subpass: pass::Subpass<'a, B>,
    ) -> Self {
        GraphicsPipelineDesc {
            label: None,
            primitive_assembler,
            rasterizer,
            fragment,
            blender: BlendDesc::default(),
            depth_stencil: DepthStencilDesc::default(),
            multisampling: None,
            baked_states: BakedStates::default(),
            layout,
            subpass,
            flags: PipelineCreationFlags::empty(),
            parent: BasePipeline::None,
        }
    }
}

/// Methods for rasterizing polygons, ie, turning the mesh
/// into a raster image.
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum PolygonMode {
    /// Rasterize as a point.
    Point,
    /// Rasterize as a line with the given width.
    Line,
    /// Rasterize as a face.
    Fill,
}

/// The front face winding order of a set of vertices. This is
/// the order of vertexes that define which side of a face is
/// the "front".
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum FrontFace {
    /// Clockwise winding order.
    Clockwise,
    /// Counter-clockwise winding order.
    CounterClockwise,
}

/// A depth bias allows changing the produced depth values
/// for fragments slightly but consistently. This permits
/// drawing of multiple polygons in the same plane without
/// Z-fighting, such as when trying to draw shadows on a wall.
///
/// For details of the algorithm and equations, see
/// [the Vulkan spec](https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html#primsrast-depthbias).
#[derive(Copy, Clone, Debug, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct DepthBias {
    /// A constant depth value added to each fragment.
    pub const_factor: f32,
    /// The minimum or maximum depth bias of a fragment.
    pub clamp: f32,
    /// A constant bias applied to the fragment's slope.
    pub slope_factor: f32,
}

/// Rasterization state.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Rasterizer {
    /// How to rasterize this primitive.
    pub polygon_mode: PolygonMode,
    /// Which face should be culled.
    pub cull_face: Face,
    /// Which vertex winding is considered to be the front face for culling.
    pub front_face: FrontFace,
    /// Whether or not to enable depth clamping; when enabled, instead of
    /// fragments being omitted when they are outside the bounds of the z-plane,
    /// they will be clamped to the min or max z value.
    pub depth_clamping: bool,
    /// What depth bias, if any, to use for the drawn primitives.
    pub depth_bias: Option<State<DepthBias>>,
    /// Controls how triangles will be rasterized depending on their overlap with pixels.
    pub conservative: bool,
    /// Controls width of rasterized line segments.
    pub line_width: State<f32>,
}

impl Rasterizer {
    /// Simple polygon-filling rasterizer state
    pub const FILL: Self = Rasterizer {
        polygon_mode: PolygonMode::Fill,
        cull_face: Face::NONE,
        front_face: FrontFace::CounterClockwise,
        depth_clamping: false,
        depth_bias: None,
        conservative: false,
        line_width: State::Static(1.0),
    };
}

/// A description of an equation for how to blend transparent, overlapping fragments.
#[derive(Clone, Debug, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct BlendDesc {
    /// The logic operation to apply to the blending equation, if any.
    pub logic_op: Option<LogicOp>,
    /// Which color targets to apply the blending operation to.
    pub targets: Vec<ColorBlendDesc>,
}

/// Logic operations used for specifying blend equations.
#[derive(Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[allow(missing_docs)]
pub enum LogicOp {
    Clear = 0,
    And = 1,
    AndReverse = 2,
    Copy = 3,
    AndInverted = 4,
    NoOp = 5,
    Xor = 6,
    Or = 7,
    Nor = 8,
    Equivalent = 9,
    Invert = 10,
    OrReverse = 11,
    CopyInverted = 12,
    OrInverted = 13,
    Nand = 14,
    Set = 15,
}

///
pub type SampleMask = u64;

///
#[derive(Clone, Debug, PartialEq)]
pub struct Multisampling {
    ///
    pub rasterization_samples: image::NumSamples,
    ///
    pub sample_shading: Option<f32>,
    ///
    pub sample_mask: SampleMask,
    /// Toggles alpha-to-coverage multisampling, which can produce nicer edges
    /// when many partially-transparent polygons are overlapping.
    /// See [here]( https://msdn.microsoft.com/en-us/library/windows/desktop/bb205072(v=vs.85).aspx#Alpha_To_Coverage) for a full description.
    pub alpha_coverage: bool,
    ///
    pub alpha_to_one: bool,
}